Literatura científica selecionada sobre o tema "Fano fourfolds of K3 type"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fano fourfolds of K3 type".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Fano fourfolds of K3 type"
Fu, Lie, Robert Laterveer e Charles Vial. "Multiplicative Chow–Künneth decompositions and varieties of cohomological K3 type". Annali di Matematica Pura ed Applicata (1923 -) 200, n.º 5 (1 de junho de 2021): 2085–126. http://dx.doi.org/10.1007/s10231-021-01070-0.
Texto completo da fonteLaterveer, Robert. "On the Chow ring of certain Fano fourfolds". Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19, n.º 1 (1 de dezembro de 2020): 39–52. http://dx.doi.org/10.2478/aupcsm-2020-0004.
Texto completo da fonteMongardi, Giovanni. "On symplectic automorphisms of hyper-Kähler fourfolds of K3[2] type". Michigan Mathematical Journal 62, n.º 3 (setembro de 2013): 537–50. http://dx.doi.org/10.1307/mmj/1378757887.
Texto completo da fonteLaza, Radu, e Kieran O’Grady. "Birational geometry of the moduli space of quartic surfaces". Compositio Mathematica 155, n.º 9 (2 de agosto de 2019): 1655–710. http://dx.doi.org/10.1112/s0010437x19007516.
Texto completo da fonteTanimoto, Sho, e Anthony Várilly-Alvarado. "Kodaira dimension of moduli of special cubic fourfolds". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, n.º 752 (1 de julho de 2019): 265–300. http://dx.doi.org/10.1515/crelle-2016-0053.
Texto completo da fontePym, Brent. "Elliptic singularities on log symplectic manifolds and Feigin–Odesskii Poisson brackets". Compositio Mathematica 153, n.º 4 (13 de março de 2017): 717–44. http://dx.doi.org/10.1112/s0010437x16008174.
Texto completo da fonteKonovalov, V. A. "THE USE OF MARKOV ALGORITHMS FOR THE STUDY OF l-VOIDS IN BIG DATA OF SOCIO-ECONOMIC SYSTEMS. PART 2". Vestnik komp'iuternykh i informatsionnykh tekhnologii, n.º 217 (julho de 2022): 30–41. http://dx.doi.org/10.14489/vkit.2022.07.pp.030-041.
Texto completo da fonteKretschmer, Andreas. "The Chow ring of hyperkähler varieties of $$K3^{[2]}$$-type via Lefschetz actions". Mathematische Zeitschrift, 9 de setembro de 2021. http://dx.doi.org/10.1007/s00209-021-02846-z.
Texto completo da fonteHuybrechts, Daniel. "Chow groups of surfaces of lines in cubic fourfolds". Épijournal de Géométrie Algébrique Special volume in honour of... (30 de julho de 2023). http://dx.doi.org/10.46298/epiga.2023.10425.
Texto completo da fonteGounelas, Frank, e Alexis Kouvidakis. "On some invariants of cubic fourfolds". European Journal of Mathematics 9, n.º 3 (11 de julho de 2023). http://dx.doi.org/10.1007/s40879-023-00651-y.
Texto completo da fonteTeses / dissertações sobre o assunto "Fano fourfolds of K3 type"
Hernandez, Gomez Jordi Emanuel. "Transformations spéciales des quadriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES086.
Texto completo da fonteIn this thesis we study special self-birational transformations of smooth quadrics. We obtain a classification result in dimensions 3 and 4. In these two cases, we prove that there is only one example. In the case of dimension 3, it is given by the linear system of quadrics passing through a rational normal quartic curve. In the case of dimension 4, it is given by the linear system of cubic complexes passing through a non-minimal K3 surface of degree 10 with 2 skew (-1)-lines that is not contained in any other quadric. The base locus scheme of the inverse map is in general a smooth surface of the same type. Moreover, we prove that the corresponding pair of K3 surfaces are non-isomorphic Fourier-Mukai parters. These surfaces are also related to special cubic fourfolds. More precisely, we show that a general cubic in the Hassett divisor of special cubic fourfolds of discriminant 14 contains such a surface. This is the first example of a family of non-rational surfaces characterizing cubics in this divisor. The study of special birational transformations of quadrics is motivated by an example described by M. Bernardara, E. Fatighenti, L. Manivel, et F. Tanturri, who provided a list of 64 new families of Fano fourfolds of K3 type. Many examples in their list give varieties that admit multiple birational contractions realized as blow-ups of Fano manifolds along non-minimal K3 surfaces. The nature of the constructions implies that the corresponding K3 surfaces have equivalent derived categories. We partially answer the natural question: for which families the corresponding K3 surfaces are isomorphic, and for which families they are not?
Capítulos de livros sobre o assunto "Fano fourfolds of K3 type"
Huybrechts, Daniel. "Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated K3 Categories". In Lecture Notes of the Unione Matematica Italiana, 165–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18638-8_5.
Texto completo da fonte