Literatura científica selecionada sobre o tema "Fabrication additive arc-fil"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fabrication additive arc-fil".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Teses / dissertações sobre o assunto "Fabrication additive arc-fil"

1

Cadiou, Stephen. "Modélisation magnéto-thermohydraulique de procédés de fabrication additive arc-fil (WAAM)". Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS544.

Texto completo da fonte
Resumo:
Un des freins au développement des procédés de fabrication additive réside dans la qualité des pièces ainsi fabriquées. Certains défauts, tels que des porosités ou des déformations peuvent apparaître. Ces défauts sont étroitement liés au choix des paramètres opératoires et à l’histoire thermique subit lors de la fabrication. La modélisation numérique peut donc aider à comprendre comment ces paramètres opératoires influent sur la géométrie du dépôt, et sur les cinétiques thermiques qui conditionneront la microstructure et les déformations de la pièce finale. Dans cette thèse, plusieurs modèles numériques de complexité croissante ont été développés afin de mieux appréhender l’état final de la pièce. La première étape a consisté à développer un modèle d’arc représentant un tir statique TIG en 2D axisymétrique. Les équations électromagnétiques, thermiques, et hydrodynamiques sont résolues dans le plasma et le bain de fusion. Ce cas de référence a permis de valider les choix faits pour la description mathématique et numérique. Ensuite, le modèle est complexifié en ajoutant une méthode level set pour le suivi des interfaces mobiles permettant la description du procédé MIG pulsé dans une configuration axisymétrique. Après avoir été validé grâce à des expériences, le modèle est transposé en 3D pour décrire la fabrication d’un mur à l’échelle du bain de fusion avec le procédé CMT. Enfin, le modèle est simplifié en ne résolvant que le transfert de chaleur afin de décrire les transferts thermiques à l’échelle d’une pièce complète
One of the obstacles to the development of additive manufacturing processes is the quality of the built parts. Some defects, such as porosity, deformations or cracks, may appear. These defects depend strongly on the choice of operating parameters. Numerical modelling can therefore help to understand how these operating parameters control the final geometry, and the thermal cycles experienced by the material, which impact the microstructure, the deformations and residual stresses of the final part. In this thesis, several numerical models have been developped in order to better understand the final characteristics of the part. The first one concerns a 2D axial-symmetric model of arc to deal with a static TIG process. The Maxwell equations coupled with the mass, momentum, energy equations are solved in the plasma and the melt pool. Using this reference case, the arc model has been validated. This model has been made more complex by adding a level set method to track the gas-liquid interface present in pulsed MIG process in 2D axial-symmetric geometry. This model has been validated through experimental data and then extended to a 3D geometry to simulate the build-up of a wall using a CMT process. This multiphysics model was limited to the scale of the melt pool. A second 3D model was then proposed at the scale of the wall using a purely thermal model to simulate the multi-layer process with geometry prediction
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Zeya. "Robotisation de la fabrication additive par procédé arc-fil : Identification et amélioration de la commande". Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0068.

Texto completo da fonte
Resumo:
La fabrication additive de pièces métalliques a fait l'objet d'un vif intérêt ces dernières années comme une solution technologique importante pour la réalisation de pièces complexes. Parmi les différents procédés de la fabrication additive métallique, la fabrication additive arc-fil (FAAF) utilisant le soudage CMT (Cold metal transfer) est retenue pour notre étude grâce à son taux de dépôt important, faible coût des équipements et peu de perte de matière par projections lors de la fabrication. Dans la littérature, il est constaté que l'un des problèmes les plus importants qui empêchent l'application industrielle du procédé FAAF est la mauvaise précision géométrique des pièces fabriquées à cause de l'instabilité du procédé et du manque de contrôle-commande fiable pour traiter les irrégularités pendant le dépôt. L'objectif de ce travail est d'améliorer la stabilité et la performance géométrique du procédé. Dans ce travail, un système expérimental est mis en œuvre pour robotiser le procédé et contrôler la géométrie des pièces déposées. Le procédé est modélisé par les réseaux de neurones artificiels et un système contrôle-commande est développé permettant de commander la géométrie du dépôt et de réduire les erreurs de fabrication. De plus, une stratégie d'amélioration est appliquée afin de réduire les instabilités géométriques aux deux extrémités du cordon ; une méthode de contrôle in situ est également développée pour détecter les défauts internes des pièces déposées
Additive manufacturing of metallic parts has gained significant popularity in recent years as an important technological solution for the production of complex parts. Among the different processes of metal additive manufacturing, the wire-arc additive manufacturing (WAAM) using CMT (Cold metal transfer) welding is taken for our study because of its high deposition rate, low cost of equipment and little loss of material (low spatter) during manufacturing. In the literature review, it can be noted that one of the most important problems that prevent the industrial application of the WAAM is the poor geometric accuracy of the manufactured parts due to the instability of the process and the lack of reliable control system to deal with irregularities during deposition. The focus of this work is to improve the stability and geometric performance of the process. In this work, an experimental system is implemented to robotize the process and to monitor the geometry of the deposited parts. The process is modeled by artificial neural networks and a control system is developed to regulate the geometry of the deposit and to reduce manufacturing errors. Furthermore, an improvement strategy is applied in order to reduce the geometric instabilities at the ends of the bead; an in-situ monitoring method is also developed to detect the internal defects of deposited parts
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Querard, Vincent. "Réalisation de pièces aéronautiques de grandes dimensions par fabrication additive WAAM". Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0001/document.

Texto completo da fonte
Resumo:
Dans le domaine de la fabrication additive plusieurs technologies cohabitent et présentent des maturités et des applications différentes : le lit de poudre, la projection de poudre et le dépôt de fil pour ne citer que les principales. Nous avons étudié, dans le cadre de cette thèse, la réalisation de pièces de grandes dimensions du domaine aéronautique en alliage d’aluminium, par technologie WAAM (Wire Arc Additive Manufacturing) robotisée. Cette technologie repose sur l’utilisation un générateur de soudure à l'arc, d’un système de protection gazeuse et d’un système d'alimentation en métal d'apport sous forme de fil. Pour répondre à cette problématique, plusieurs voies de recherche ont été investiguées. La première traitait principalement de la génération de trajectoires : Plusieurs expérimentations ont permis de montrer l’intérêt et l’importance de la génération de trajectoires et notamment la maitrise de l’orientation outil pour la fabrication additive de pièces complexes en étudiant le respect de la géométrie souhaitée. La seconde concernait l’étude de la santé matière des pièces fabriquées. Des observations au niveau de la microstructure, mais aussi des caractéristiques mécaniques ont permis de mettre en évidence l’influence des paramètres opératoires sur la qualité de la matière déposée. Enfin, la réalisation de pièces fonctionnelles dans le cadre d’un projet financé par la DGA/DGAC et dont les partenaires étaient : STELIA, CONSTELLIUM, CT INGENIERIE et l’Ecole Centrale de Nantes, a permis de mettre en avant l’intérêt du procédé pour la fabrication de pièces aéronautiques. Un élément de structure aéronautique composé de raidisseurs a été fabriqué avec le procédé WAAM sur un substrat double courbure en alliage aluminium. Les difficultés accrues de réalisation ont pu être levées par l'emploi de la méthodologie développée dans le cadre de la thèse
In the field of additive manufacturing (AM), several processes are present and have different applications and levels of development: the main technologies are powder-bed based AM, powder projection and Wire Additive Manufacturing (WAM). We have studied, in this PhD work, the manufacturing of large scale components in aluminum alloy for aircraft industry with Wire Arc Additive Manufacturing (WAAM). This technology is based on a welding generator, a shielding gas protection and a feedstock (wire in this case). To solve this issue, several ways of research were investigated. The first one dealt with toolpath generation: several experiments have highlighted the importance of tool path generation and the tool orientation to manufacture complex parts and improve the part accuracy. The second one was about the validation of the material quality after deposit. Microstructural observations and mechanical tests have demonstrated the effect of process parameters on the deposit quality. Finally, in the context of a DGA/DGAC funded research project, whose partners were STELIA, CT INGENIERIE, CONSTELLIUM and l’Ecole Centrale de Nantes, the manufacturing of functional part in aluminum alloy has shown the interest of the process for aircraft industry. A structural component based on a double curvature geometry has been manufactured with WAAM. The methodologies developed in this PhD work have enabled us to solve the issues to manufacture that type of component
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bercelli, Lorenzo. "Étude des propriétés en fatigue polycyclique des matériaux et des structures obtenus par le procédé de fabrication additive arc-fil". Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2021. http://www.theses.fr/2021ENTA0008.

Texto completo da fonte
Resumo:
Les procédés de fabrication additive s’imposent comme des moyens de production alternatifs pour la fabrication de pièces aux géométries complexes et à forte valeur ajoutée. C’est le cas du secteur industriel naval, où est proposée l’utilisation du procédé Wire and Arc Additive Manufacturing (WAAM) pour la fabrication de pièces pouvant être creuses. Les matériaux issus de ce procédé présentent classiquement une microstructure hétérogène, des défauts internes, un champ de contraintes résiduelles et des aspérités marquées en surface. Dans ce contexte, et afin de mettre en place une méthode de dimensionnement en fatigue polycyclique d’une structure fabriquée par WAAM, les objectifs de cette thèse sont de proposer des méthodes de prévision prenant en compte, d’une part, les défauts internes inhérents au procédé, et d’autre part, l’état de surface brut de fabrication. La démarche adoptée pour répondre à ces objectifs repose sur l’utilisation de la thermométrie au cours d’essais cycliques pour l’identification de paramètres utiles à la mise en place de modèles probabilistes adaptés à chaque problématique. Il est ainsi montré, d’une part, que l’auto-échauffement (associé au caractère dissipatif) du volume moyen d’éprouvettes usinées, insensible à la présence de rares pores, permet l’identification de propriétés en fatigue d’un matériau virtuellement sain et par étude numérique du matériau avec ses défauts internes. D’autre part, le suivi par thermo-élasticimétrie (associé au couplage thermo-élastique) de surfaces brutes de fabrication permet la détection de l’amorçage de fissure et leur suivi en vue de l’identification d’une loi de propagation. Enfin ces observations sont confrontées au cas d’application d’une structure creuse aux faces internes brutes, à partir de laquelle sont posées les bases d’une démarche de dimensionnement
Additive manufacturing processes act as an alternative to the production of complex geometries and high added value parts. It is the case in the naval industry for which the Wire and Arc Additive Manufacturing (WAAM) process is used to fabricate hollow structures. WAAM materials usually show a heterogeneous microstructure, internal defects, a strong residual stress field and rough asbuilt surfaces. The objective of the present work is to propose a method for fatigue life prediction taking into account both the internal defects and the rough asbuilt surfaces. The material parameters of probabilistic models are determined through the use of thermometry in fatigue tests. Firstly, it is shown that the self-heating of machined samples is not affected by the presence of rare pores, allowing for the identification of the fatigue properties of a virtually defect-free WAAM material. Secondly, the use of infrared thermography allows for the detection and the tracking of fatigue cracks on rough as-built surfaces of samples, giving useful information to the modelisation of crack propagation. Finally, these tests results are confronted to the case of a hollow WAAM structures with rough as-built internal surfaces. The fatigue testing of these structures allow to set the basis of a fatigue dimensioning method
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ushakov, Ilia. "Établissement des structures et propriétés mécaniques de l’alliage d’Inconel 625 dans les procédés d’élaboration additive à grande vitesse : arc fil, laser fil, laser poudre et hybride". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0147.

Texto completo da fonte
Resumo:
Ce travail porte sur l'étude de l'établissement des structures et la caractérisation des propriétés mécaniques d'alliage d'Inconel 625 produites dans le cadre du projet PAM-PROD visant à réaliser des pièces de grande dimension par élaboration additive à grande vitesse. Trois techniques de dépôt sont étudiées : Arc/Fil, Laser/Fil et Laser/Poudre ainsi que la combinaison Laser/Fil et Laser/Poudre pour réalisation d'un mur hybride. Pour chaque procédés les macrostructures et microstructures sont caractérisées. Les procédés Arc/Fil et Laser/Poudre utilisés conduisent à une macrostructure mixte colonnaire équiaxe. Le procédé Laser/Fil conduit à des structures majoritairement colonnaires. Des mécanismes de formation des structures et transitions colonnaires/équiaxes sont proposés. Ces mécanismes sont alors repris et complétés pour interpréter la formation de la zone de transition dans le cas d'un mur hybride Laser Fil/Poudre. La réponse au traitement thermique de mise en solution et vieillissement est ensuite présentée en détaillant et comparant les cinétiques et mécanismes propres à chaque procédé. Les propriétés mécaniques en traction suivant 3 directions sont alors caractérisées et reliées aux structures. Pour l'ensemble des procédés une grande reproductibilité est obtenue et aucun procédé ne présente de caractère fragile. Les meilleures propriétés sont obtenues avec le procédé Laser/Poudre et le test de la jonction hybride montre que la zone de transition ne présente pas un point faible dans la structure
This work focuses on the establishment of microstructures and the characterization of the mechanical properties of Inconel 625 alloy produced as part of the PAM-PROD project aimed at producing large parts using high deposition rate additive manufacturing. Three deposition techniques are being studied: Arc/Wire, Laser/Wire and Laser/Powder, as well as a combination of Laser/Wire and Laser/Powder to produce a hybrid wall. Macrostructures and microstructures are characterized for each process. The Arc/Wire and Laser/Powder processes used lead to a mixed columnar - equiaxed macrostructure. The Laser/Wire process leads to predominantly columnar structures. Mechanisms for the formation of columnar/equiaxed structures and transitions are proposed. These mechanisms are then taken up and completed to interpret the formation of the transition zone in the case of a hybrid Laser Wire/Powder wall. The response to solution heat treatment and ageing is then presented by detailing and comparing the kinetics and mechanisms specific to each process. The tensile mechanical properties along 3 directions are then characterized and related to the structures. For all the processes, a high degree of reproducibility is obtained and none of the processes has a brittle character. The best properties were obtained with the Laser/Powder process, and the hybrid junction test showed that the transition zone was not a weak point in the structure
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Belhadj, Mohamed. "Fabrication additive par arc électrique : règles méthodes pour l’élaboration de pièces brutes en vue de leur parachèvement par usinage". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0003.

Texto completo da fonte
Resumo:
La Fabrication Additive Arc-Fil (Wire Arc Additive Manufacturing) est une technologie de fabrication qui utilise du fil métallique comme matière première et un arc électrique comme source d’énergie. Le fil est déposé à une vitesse prédéfinie et fusionné grâce à l'arc électrique, soit sur un substrat, soit sur une couche préexistante. Cette recherche se concentre sur l'utilisation du procédé Cold Metal Transfer (CMT) appliqué à l'acier inoxydable austénitique 316L. Bien que cette technologie soit couramment employée avec succès pour la réparation, le défi actuel réside dans la production en série de pièces fonctionnelles, nécessitant ainsi la résolution de problèmes de conception et de fabrication spécifiques.Le premier objectif de cette thèse est d'évaluer l'impact des paramètres du procédé, en particulier la vitesse d'avance et le temps d'inter-passe, sur les dimensions, la qualité de surface des pièces et sur le parachèvement par usinage. Pour ce faire, un plan d'expériences a été mis en place, impliquant la fabrication de murs multicouches et multi cordons sur un substrat monté sur un support en aluminium. Ensuite, une face de chaque mur fabriqué a été usinée afin de déterminer la profondeur d'usinage nécessaire pour obtenir une surface exempte d'ondulations, et d'analyser la rugosité de surface ainsi que la dureté de ces zones. Enfin, une nouvelle méthode de recouvrement a été développée.Le deuxième objectif consiste à exploiter les résultats obtenus pour développer des méthodes et des règles permettant de passer de la conception 3D à la réalisation d'une pièce finale. Ces méthodes s’appuient sur une phase de fabrication additive et une phase de parachèvement par usinage. Ce processus vise à éliminer les dispersions géométriques et d’état de surface inhérentes au procédé WAAM, à déterminer la surépaisseur d’usinage nécessaire, et à intégrer les problématiques liées aux contraintes générées par le procédé primaire.Le dernier objectif est de comprendre les mécanismes de génération des contraintes résiduelles et des déformations induites par le procédé primaire. Pour ce faire, une modélisation thermomécanique du procédé a été développée. Elle a mis en évidence l'influence de la vitesse d'avance et du temps d'inter-passe sur le comportement thermomécanique
Wire Arc Additive Manufacturing is a manufacturing technology that uses metal wire as the raw material and an electric arc as the energy source. The wire is deposited at a predefined rate and fused by the arc, either onto a substrate or onto a pre-existing layer. This research focuses on the use of the Cold Metal Transfer (CMT) process applied to austenitic 316L stainless steel. While this technology is widely and successfully used for repair, the current challenge lies in the mass production of functional parts, requiring the resolution of specific design and manufacturing issues.The first objective of this thesis is to evaluate the impact of process parameters, in particular travel speed and interpass time, on part dimensions, surface quality and machining finish. To accomplish this, a design of experiments was set up, involving the manufacture of multi-layer, multi-bead walls on a substrate mounted on an aluminum support. Next, one face of each fabricated wall was machined to determine the machining depth required to achieve a waviness-free surface, and to analyze the surface roughness and hardness of these areas. Finally, a new overlapping method was developed.The second objective is to use the results obtained to develop methods and rules for moving from 3D design to the production of a final part. These methods rely on an additive manufacturing phase and a machining finishing phase. This process aims to eliminate geometric and surface finish variations inherent to the WAAM process, determine the necessary machining allowance, and incorporate issues related to the primary process.The final objective is to understand the mechanisms behind the generation of residual stresses and deformations induced by the primary process. To achieve this, a thermomechanical modeling of the process was developed, highlighting the influence of Travel speed and interpass time on the thermomechanical behavior
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gomez, Ortega Arturo. "Prototypage rapide de pièces en alliage d’aluminium : étude du dépôt de matière et d’énergie lors de la fusion à l’arc d’un fil par le procédé MIG-CMT". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS067/document.

Texto completo da fonte
Resumo:
Un nouveau procédé de fabrication additive de pièces métalliques, basé sur le procédé de soudage à l’arc appelé CMT (Cold Metal Transfert), est étudié dans l’objectif de réaliser des pièces en alliage d’aluminium Al-5Si. Un banc de fabrication additive basé sur le principe des imprimantes 3D open source, sur lequel a été intégré le procédé CMT, a été spécialement développé. Le procédé CMT permet de contrôler la fusion d’un fil d’aluminium et son dépôt sous la forme de gouttelettes sur la surface de construction, formant après solidification des « cordons » qui peuvent être superposés pour fabriquer des pièces. L’influence des paramètres du procédé sur les phénomènes de transfert de matière et de chaleur lors de la fusion du métal et de son dépôt sur la surface de construction, ainsi que sur les caractéristiques géométriques des cordons déposés, dans le cas de dépôts mono-cordon, puis dans le cas de murs formés par la superposition d’un grand nombre de cordons, est étudiée. Plusieurs défauts géométriques ont été observés, et les conditions de leur apparition analysées, grâce notamment à l’utilisation d’une caméra rapide. La compréhension des relations entre paramètres procédé, mécanismes de transfert de chaleur et de matière, et géométrie des cordons, a permis de corriger ces défauts en identifiant puis modifiant les paramètres procédé responsables de leur apparition. Enfin, une méthode de contrôle en ligne du procédé, basée sur l’analyse des signaux de tension et d’intensité produits par le générateur de soudage au cours du phénomène de dépôt, qui permet de détecter précocement l’apparition de défauts, et ainsi de modifier les paramètres procédé avant qu’ils ne s’amplifient, a été proposée
A new additive manufacturing process for metallic parts, based on the arc welding process known as CMT (Cold Metal Transfer), is studied with the objective of building parts with the aluminium alloy Al5Si. A workbench for additive manufacturing based on the 3D printers open-source principle, on which the CMT generator was integrated, was specially developed. The CMT process allows to control the aluminium wire melting and its deposition under the form of droplets on the building surface, forming, after solidification, beads that can be superposed for the parts construction. The process parameters influence on the material transfer and heat transfer during the metal melting and deposition on the build surface, as well as on the geometric characteristics of the deposed beads, in the case of mono-layer deposits, and in the case of multi-layer walls, is studied. Many geometric defects were observed, and their apparition conditions analysed, thanks in particular to the use of a high-speed camera. The understanding of the relations between the process parameters, the melting and heat transfer mechanisms, and the beads geometry, allowed the defects correction by identifying and modifying the process parameters responsible of their apparition. Finally, an on-line control method for the process, based on the analysis of the voltage and current signals produced by the welding generator during the deposition phenomena, making possible the early detection of defects, and then the modification of the process parameters before they are amplified, has been proposed
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Nwankpa, Uzoma Vincent. "Effectiveness of arc based processes and deposition strategies on additive manufacture structure for naval and aerospace applications". Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0010.

Texto completo da fonte
Resumo:
Le processus de fabrication additive par fusion de fil métallique par arc électrique (Wire Arc Additive Manufacturing, WAAM) est devenu un procédé pertinent pour la fabrication de composants de structures complexes, qui étaient très compliqués à réaliser avec les méthodes de fabrication conventionnelles. Différents procédés à base d'arc électriques sont disponibles pour la mise en œuvre de matériaux tels que les alliages de titane ou d'aluminium et les aciers inoxydables, afin de produire des composants de grandes tailles. Néanmoins, il reste à déterminer quel est le meilleur procédé à base d'arc électrique à employer pour un matériau donné. Dans le cadre de cette thèse, plusieurs procédés à base d'arc électrique ont été étudiés pour déterminer s'ils convenaient à la fabrication de structures en acier inoxydable austénitique et en aluminium. Pour ce dernier, les travaux ont porté sur le procédé MIG/MAG de transfert de métal froid (CMT) en raison de son vaste choix de paramètres et de son faible apport de chaleur. Différentes stratégies de dépôt et l'utilisation des procédés TIG, MIG et Plasma ont été étudiés pour le dépôt d'aciers inoxydables austénitique par fabrication additive. Une étude approfondie des paramètres du processus tels que le courant, la vitesse de dévidage du fil et la vitesse de déplacement de la torche a été réalisée. Il a été montré que les propriétés mécaniques de chaque structure déposée par divers procédés à base d'arc satisfaisaient aux propriétés mécaniques requises. De plus, les stratégies de dépôt ont eu un impact plus important sur les propriétés mécaniques. En outre, la précision de la géométrie et le taux de ferrite diminuent en fonction de l'augmentation de l'apport de chaleur. Des études sur l'aluminium ont été menées avec le procédé CMT, une méthodologie de sélection de la meilleure synergie et du meilleur mode CMT pour le dépôt d'un fil prototype a été proposée. En outre, l'impact des stratégies de dépôt et de l'alternance de ces stratégies avec divers modes CMT sur l'atténuation de la propagation des fissures à partir de la base d'un composant WAAM ont été étudiées. Des études détaillées sur l'impact de la rampe des paramètres sur la précision de la géométrie de la paroi mince en aluminium ont été réalisées ainsi que sur la capacité de réaliser des structures suspendues. Enfin, l'étude a montré que le dépôt d'une structure en aluminium sur un support aux propriétés différentes est sujet à des fissures dues à une expansion et une contraction thermique inégales. Ainsi, ces travaux apportent des éléments d'aciers inoxydables austénitique et l'aluminium de paramétrage des procédés WAAM qui peux être significative dans l’objectif de réaliser des composants pour des applications navales et aéronautiques
Wire and Arc Additive Manufacturing process is becoming an alternative technique used in manufacturing components of complex structures, which were unimaginable to achieve by conventional manufacturing methods. Various arc-based processes have been applied with titanium, aluminium, steel, and stainless steel to produce large components. Nevertheless, the best arc-based process for any given material of choice is yet to be addressed. In this research, several arc-based processes were investigated for their suitability to manufacture austenitic stainless steel and aluminium structures. However, the latter was confined to be deposited by cold metal transfer process (CMT) due to its high deposition rate and low heat input. Different deposition strategies and the use of gas metal arc, tungsten inert gas and plasma arc as heat sources for the deposition of austenitic stainless steel were investigated. An in-depth investigation of the process parameters such as current, wire feed speed and travel speed were carried out. It was found that the mechanical properties on each structure deposited by various arc-based processes satisfied the required mechanical properties Moreover, deposition strategies had moreimpact on the mechanical properties. Inaddition, the geometry accuracy and ferrite number decrease with respect to increased heat input. Aluminium studies were investigated with CMT process; a methodology to select the best CMT synergy and deposition mode for a prototype wire was proposed. Furthermore, the impact of deposition strategies and alternating these strategies with various CMT modes on mitigating crack propagation from the root of a WAAM component was investigated. Detailed studies on impact of ramping parameters on the aluminium thin wall geometry accuracy were performed. Afterwards the ramping parameters was implemented in the manufacture of suspended aluminium structures on steel support. Finally, the investigation showed that deposition of aluminium structure on a support of dissimilar properties is subject to crack due to uneven thermal expansion and contraction. The results of these research work on austenitic stainless steel and aluminium alloys for WAAM component can be of significance in the naval and aerospace applications
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bourlet, Clément. "Développement de la fabrication additive par procédé arc-fil pour les aciers : caractérisation microstructurale et mécanique des dépôts en nuances ER100 et 316L pour la validation des propriétés d'emploi de pièces industrielles". Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0058.

Texto completo da fonte
Resumo:
L'arc-fil est un nouveau procédé de fabrication additive utilisant une cellule desoudage robotisée pour la fabrication, couche par couche, de pièces de grandes dimensions. Ilpermet de réaliser des ébauches de pièces unitaires ou de petites séries avec des coûts et desdélais de fabrication réduits. Les premiers développements se sont principalement orientés sur laréalisation de pièces à forte valeur ajoutée en alliage de titane et d’aluminium pour le secteuraéronautique et aérospatial, et intéressent maintenant d’autres secteurs tels que les industriesnavales, pétrolières, ferroviaires et mécaniques utilisant des aciers. Ce travail propose uneméthodologie de sélection des paramètres et des stratégies de dépôts, avec le contrôle final despièces fabriquées. Il porte sur deux matériaux : un acier C-Mn à haute limite d’élasticité(ER100) et un acier inoxydable austénitique (316LSi). Le résultat des caractérisations permetd’établir le lien entre les conditions de fabrication, les dimensions géométriques et les propriétésmicrostructurales et mécaniques des pièces obtenues, ce qui conduit au final à une démarchepermettant de faire évoluer le procédé vers l’industrialisation
Wire-arc additive manufacturing is a new process using a common weldingrobotic cell to build large parts layer by layer. It allows building rough single pieces orsmall series parts with a low cost and a short delay. First developments were done ontitanium and aluminum parts for aeronautic and space applications, but more industriessuch as maritime, oil and gas, railway…are now interested into it. In this work, amethodology is proposed to define suitable process parameters and deposit’s strategies,with the final control of the elaborated parts. Developments are done on both highstrength steel ER100 and austenitic stainless steel 316LSi. The results of theexperimental characterisation enable to show the relations between the manufacturingconditions, the dimensions, the microstructure and the mechanicals properties of theparts, and finally lead to guidelines to evolve the wire-arc additive manufacturingtowards industrialisation
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia