Literatura científica selecionada sobre o tema "Fabrication"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fabrication".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Fabrication"
R., R., e W. Ritha. "A Fabrication Repertoire Replica Amidst Partisan Commerce Layaway Strategem And Infalllibity Cannibalizing Neutrosophic Fuzzy Number". International Journal of Neutrosophic Science 24, n.º 1 (2024): 196–207. http://dx.doi.org/10.54216/ijns.240118.
Texto completo da fonteHao, Yongcun, Yanlong Wang, Yonghao Liu, Weizheng Yuan e Honglong Chang. "An SOI-based post-fabrication process for compliant MEMS devices". Journal of Micromechanics and Microengineering 34, n.º 4 (12 de março de 2024): 045005. http://dx.doi.org/10.1088/1361-6439/ad2f4b.
Texto completo da fonteCoogan, Jeremiah, Candida R. Moss e Joseph A. Howley. "The Socioeconomics of Fabrication: Textuality, Authenticity, and Social Status in the Roman Mediterranean". Arethusa 57, n.º 2 (março de 2024): 227–53. http://dx.doi.org/10.1353/are.2024.a934134.
Texto completo da fonteSowrirajan, M., S. Vijayan, M. Arulraj e J. Sundaresan. "Metallurgical assessments on 316L stainless steel thin walled plate fabricated through GMAW based typical Wire Arc Additive Manufacturing". YMER Digital 21, n.º 02 (9 de fevereiro de 2022): 227–37. http://dx.doi.org/10.37896/ymer21.02/23.
Texto completo da fonteBakar, Azrena Abu, Masahiro Nakajima, Chengzhi Hu, Hirotaka Tajima, Shoichi Maruyama e Toshio Fukuda. "Fabrication of 3D Photoresist Structure for Artificial Capillary Blood Vessel". Journal of Robotics and Mechatronics 25, n.º 4 (20 de agosto de 2013): 673–81. http://dx.doi.org/10.20965/jrm.2013.p0673.
Texto completo da fonteDeisinger, Ulrike, Sabine Hamisch, Matthias Schumacher, Franzika Uhl, Rainer Detsch e Günter Ziegler. "Fabrication of Tailored Hydroxyapatite Scaffolds: Comparison between a Direct and an Indirect Rapid Prototyping Technique". Key Engineering Materials 361-363 (novembro de 2007): 915–18. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.915.
Texto completo da fonteWahyuni, Wulan Tri, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti e Rudi Heryanto. "A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques". Indo. J Chem. Res. 8, n.º 3 (31 de janeiro de 2021): 210–18. http://dx.doi.org/10.30598//ijcr.2021.7-wul.
Texto completo da fonteWahyuni, Wulan Tri, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti e Rudi Heryanto. "A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques". Indonesian Journal of Chemical Research 8, n.º 3 (31 de janeiro de 2021): 210–18. http://dx.doi.org/10.30598/ijcr.2021.8-wul.
Texto completo da fonteSun, Yuting, Jiayu Ding, Xiaoyu Xia, Xiaohan Wang, Jianwen Xu, Shuqing Song, Dong Lan, Jie Zhao e Yang Yu. "Fabrication of airbridges with gradient exposure". Applied Physics Letters 121, n.º 7 (15 de agosto de 2022): 074001. http://dx.doi.org/10.1063/5.0102555.
Texto completo da fonteXie, Ke Fei, Ke Fu Yao e Tian You Huang. "Influence of the Melting Temperature on the Fabrication of a Ti-Cu-Zr-Ni-Sn Bulk Metallic Glass". Materials Science Forum 688 (junho de 2011): 413–18. http://dx.doi.org/10.4028/www.scientific.net/msf.688.413.
Texto completo da fonteTeses / dissertações sobre o assunto "Fabrication"
Rader, Nicolas Glen. "DESIGN [fabrication] BUILD". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34425.
Texto completo da fonteIncludes bibliographical references (p. 73-75).
DESIGN [fabrication] BUILD proposes a new relationship among the architect, homeowner, and fabricator/assembler through the use of parametric software in order to create a truly customizable prefabricated home. This customization is possible through the combination of the software with CNC machinery and a material yet to be fully explored by architects, honeycomb composite panel. The result is a kit of parts that is efficient in terms of time and cost in design, production, and assembly, it is offered as an improvement from contracted stick built construction.
by Nicolas Glen Rader.
M.Arch.
Garvey, Carrie Rosicky. "Foliage and Fabrication". VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/664.
Texto completo da fonteHøvik, Jens. "Photonic Crystal Waveguide Fabrication". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19277.
Texto completo da fonteMore, Daesha. "Microhotplate Sensor Array Fabrication". Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/MoreD2007.pdf.
Texto completo da fonteHan, Sarah (Sarah J. ). "Biologically inspired digital fabrication". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85422.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 37-40).
Objects and systems in nature are models for the practice of sustainable design and fabrication. From trees to bones, natural systems are characterized by the constant interplay of creation, environmental response, and analysis of current structural constituents, as part of a larger dynamic system. In contrast, traditional methods of digital design and fabrication are characterized by a linear progression of three main stages: modeling (digital generation in the digital domain), analysis (digital mapping of the physical domain), and fabrication (physical generation of the digital domain). Moving towards a system process where modeling, analysis, and fabrication are integrated together for the development of a dynamic process will transform traditional fabrication technology and bring about the creation of sustainable and more efficient synthetic environments. Integration of modeling, analysis, and fabrication into one fluid process requires the development of a fabrication platform with capabilities for real time control. This thesis explores and investigates the creation of a framework for real time control of industrial robotic arms as part of a multipurpose fabrication platform.
by Sarah Han.
M. Eng.
Hsu, Charles Heng-Yuan 1967. "Silicon microaccelerometer fabrication technologies". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43545.
Texto completo da fonteIncludes bibliographical references (leaves 275-282).
by Charles Heng-Yuan Hsu.
Ph.D.
Li, Guixin. "Superlens design and fabrication". HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1066.
Texto completo da fonteXia, Sijing. "Fabrication of protein nanostructures". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/10126/.
Texto completo da fonteRUBERTO, FRANCESCO. "Fablabs to transform the Italian Industry: The Case of the Fablabs Community". Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1220438.
Texto completo da fonteThis research studies the case of Fablabs community helping the Italian industry in the process of innovation and growth. This case is representative of how entrepreneurs engage in Fablab digital fabrication technologies which allow to make almost anything and optimizing time and production cost. The number of entrepreneurs in Italy using Fablab services is exploding. However, while entrepreneurs in the main centers of innovation, such as Silicon Valley, have crucial social, cultural, economic, and material resources to build high-impact companies, these resources are often not present in moderate innovators countries. Those resources are defined as innovation infrastructures, stable and dependable resources necessary to systematically conduct technology innovation activities. Entrepreneurs in moderate innovators countries have a double challenge of excelling at their company, and using innovation infrastructures such as Fablabs. This research analyzes how Fablabs can facilitate the innovation activities of the Italian industries, reviewing the case of Fablabs who experience success in providing services to companies. To obtain useful data that match the research objectives, this study use a Focus group interview method. The questions are open-ended, which means that during the interviews, the actual questions may change according to the responses of the interviewees. I depended on triangulation as a means of ensuring construct validity. Data triangulation involves collecting data from interviews, observations, and document analysis. The findings will contribute to understanding the role that Fablabs play for the Italian industry, explaining how digital fabrication technologies can help Italian companies to be more competitive. Keywords: Fablab, Italian industry, MIT, Digital Fabrication, Neil Gershenfeld, case study, Silicon Valley.
Chen, Xiang. "Making Fabrication Real: Fabrication for Real Usage, with Real Objects, by Real People". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1139.
Texto completo da fonteLivros sobre o assunto "Fabrication"
Petersen, Paulann. Fabrication. Portland, Or: 26 Books, 1996.
Encontre o texto completo da fonteC, Oakley, Green V, Sutcliffe C e City and Guilds of London Institute., eds. Fabrication. Cheltenham: Stam press, 1987.
Encontre o texto completo da fontePetersen, Paulann. Fabrication. Portland, Or: 26 Books, 1996.
Encontre o texto completo da fonteWilliams, Kim, ed. Digital Fabrication. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0582-7.
Texto completo da fonteYatsui, Takashi. Nanophotonic Fabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24172-7.
Texto completo da fonteB, Bentz, Longeot H e Jourdan L, eds. Fabrication industrielle. Paris: Dunod, 1985.
Encontre o texto completo da fonteShimizu, Gordon T. Electronic fabrication. Albany, N.Y: Delmar Publishers, 1986.
Encontre o texto completo da fontePasolini, Pier Paolo. Fabrication =: Affabulazione. London: Oberon Books, 2010.
Encontre o texto completo da fonteInstitute, Welding, ed. Fabrication: A review of welding and fabrication worldwide. Abington: Welding Institute, 1986.
Encontre o texto completo da fonteInstitute, Welding, ed. Fabrication: A review of welding and fabrication worldwide. Abington: Welding Institute, 1987.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Fabrication"
Pelleg, Joshua. "Fabrication". In Mechanical Properties of Silicon Based Compounds: Silicides, 13–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22598-8_3.
Texto completo da fonteGerman, Randall M. "Fabrication". In Particulate Composites, 225–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29917-4_7.
Texto completo da fonteChamberlain, M. R. "Fabrication". In Dictionary of Converting, 110–69. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2266-5_4.
Texto completo da fonteVeendrick, Harry. "Fabrication". In Bits on Chips, 167–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76096-4_10.
Texto completo da fonteFrigeni, Fabrizio. "Fabrication". In Industrial Robotics Control, 537–51. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8989-1_19.
Texto completo da fonteCubitt, Sean. "Fabrication". In Emerging Digital Spaces in Contemporary Society, 207–18. London: Palgrave Macmillan UK, 2010. http://dx.doi.org/10.1057/9780230299047_34.
Texto completo da fonteBredella, Nathalie. "Fabrication". In The Architectural Imagination at the Digital Turn, 120–44. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003189527-6.
Texto completo da fonteOtto, Ulf. "Fabrication". In The Theater of Electricity, 117–53. Stuttgart: J.B. Metzler, 2023. http://dx.doi.org/10.1007/978-3-476-05961-1_4.
Texto completo da fonteHarmon, Brendan. "Fabrication". In Computational Design for Landscape Architects, 183–99. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003354376-18.
Texto completo da fonteWilliams, Kim. "Digital Fabrication". In Digital Fabrication, 407–8. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0582-7_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Fabrication"
Reiser, Susan L., e Rebecca F. Bruce. "Fabrication". In the 40th ACM technical symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1508865.1509001.
Texto completo da fonteCamilo, Gilberto M. "Mechanical properties of chalcogenide glasses: a review". In Photonics Fabrication Europe, editado por Hans G. Limberger e M. John Matthewson. SPIE, 2003. http://dx.doi.org/10.1117/12.488150.
Texto completo da fonteCremona, Marco, Stefano Pelli, Joao A. M. Pereira e Giancarlo C. Righini. "Fabrication and characterization of optical waveguides on LiF by ion beam irradiation". In Photonics Fabrication Europe, editado por Giancarlo C. Righini. SPIE, 2003. http://dx.doi.org/10.1117/12.472700.
Texto completo da fonteDiemeer, Mart B. J. "Hybrid optical waveguide devices based on polymers and silica". In Photonics Fabrication Europe, editado por Alfred Driessen, Roel G. Baets, John G. McInerney e Ephraim Suhir. SPIE, 2003. http://dx.doi.org/10.1117/12.472701.
Texto completo da fonteSzekely, Vladimir. "Algorithmic solutions for thermal and electrostatic simulation of MEMS". In Photonics Fabrication Europe, editado por Uwe F. W. Behringer, Bernard Courtois, Ali M. Khounsary e Deepak G. Uttamchandani. SPIE, 2003. http://dx.doi.org/10.1117/12.472702.
Texto completo da fonteBernard, Pierre, Nathalie Gregoire e Ghislain Lafrance. "Automated laser trimming for ultralow error function GFF". In Photonics Fabrication Europe, editado por Valerio Pruneri, Robert P. Dahlgren e Gregory M. Sanger. SPIE, 2003. http://dx.doi.org/10.1117/12.472703.
Texto completo da fonteZhao, Luping, Koon G. Neoh, Sock W. Ng e En T. Kang. "Photo-induced reaction of polyaniline with viologen in the solid state". In Photonics Fabrication Europe, editado por Yoseph Bar-Cohen. SPIE, 2003. http://dx.doi.org/10.1117/12.472705.
Texto completo da fonteFonjallaz, Pierre-Yves, Ola Gunnarsson, Mikhail Popov, Walter Margulis, Ingemar Petermann, David Berlemont e Fredrik Carlsson. "Advanced components for microwave photonics". In Photonics Fabrication Europe, editado por Valerio Pruneri, Robert P. Dahlgren e Gregory M. Sanger. SPIE, 2003. http://dx.doi.org/10.1117/12.472706.
Texto completo da fonteHamacher, Michael, Ute Troppenz, Helmut Heidrich e Dominik G. Rabus. "Active ring resonators based on GaInAsP/InP". In Photonics Fabrication Europe, editado por Alfred Driessen, Roel G. Baets, John G. McInerney e Ephraim Suhir. SPIE, 2003. http://dx.doi.org/10.1117/12.472816.
Texto completo da fonteSchiattone, Francesco, Stefano Bonino, Luigi Gobbi, Angelamaria Groppi, Marco Marazzi e Maurizio Musio. "Low cost, small form factor, and integration as the key features for the optical component industry takeoff". In Photonics Fabrication Europe, editado por Giancarlo C. Righini. SPIE, 2003. http://dx.doi.org/10.1117/12.472817.
Texto completo da fonteRelatórios de organizações sobre o assunto "Fabrication"
Blaedel, K. L. Fabrication Technology. Office of Scientific and Technical Information (OSTI), março de 1993. http://dx.doi.org/10.2172/10194530.
Texto completo da fonteAuthor, Not Given. Cohesive ceramic fabrication. Office of Scientific and Technical Information (OSTI), janeiro de 1989. http://dx.doi.org/10.2172/7169030.
Texto completo da fonteLevesque, Stephen. Nuclear Fabrication Consortium. Office of Scientific and Technical Information (OSTI), abril de 2013. http://dx.doi.org/10.2172/1072951.
Texto completo da fonteRajic, S. Micromechanical Structures Fabrication. Office of Scientific and Technical Information (OSTI), maio de 2001. http://dx.doi.org/10.2172/814244.
Texto completo da fonteGibson, Joshem, Kelly Bingham, Thomas Smouse e Frank Lopez. Vessel Fabrication Overview. Office of Scientific and Technical Information (OSTI), junho de 2021. http://dx.doi.org/10.2172/1798108.
Texto completo da fonteWong, Amy. Glovebox Fabrication Pictures. Office of Scientific and Technical Information (OSTI), novembro de 2023. http://dx.doi.org/10.2172/2228625.
Texto completo da fonteViola, M., T. Brown, P. Heitzenroeder, F. Malinowski, W. Reiersen, L. Sutton, P. Goranson et al. NCSX Vacuum Vessel Fabrication. Office of Scientific and Technical Information (OSTI), outubro de 2005. http://dx.doi.org/10.2172/899581.
Texto completo da fonteEric L. Shaber e Bradley J Schrader. MOX Fabrication Isolation Considerations. Office of Scientific and Technical Information (OSTI), agosto de 2005. http://dx.doi.org/10.2172/911246.
Texto completo da fonteBourell, D. L., J. J. Beaman e Jr. Solid Freeform Fabrication Proceedings. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2001. http://dx.doi.org/10.21236/ada400355.
Texto completo da fonteJL Bump e RF Luther. Biaxial Creep Specimen Fabrication. Office of Scientific and Technical Information (OSTI), fevereiro de 2006. http://dx.doi.org/10.2172/884675.
Texto completo da fonte