Siga este link para ver outros tipos de publicações sobre o tema: Explorers Antarctica Social conditions.

Artigos de revistas sobre o tema "Explorers Antarctica Social conditions"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 24 melhores artigos de revistas para estudos sobre o assunto "Explorers Antarctica Social conditions".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Miroshnychenko, Olena A. "THE ROLE OF AGE DIFFERENCES OF INDIVIDUAL-TYPOLOGICAL FEATURES OF UKRAINIAN WINTERERS IN THE PROCESS OF ADAPTATION TO EXTREME CONDITIONS". Scientific Notes of Ostroh Academy National University: Psychology Series 1, n.º 13 (24 de junho de 2021): 63–67. http://dx.doi.org/10.25264/2415-7384-2021-13-63-67.

Texto completo da fonte
Resumo:
The article considers the individually-typology features of Ukrainian winterers and its role in the process of adaptation to extreme living conditions. The relevance of the article is based on the fact that Ukraine for 26 years has the opportunity to explore the White Continent at the Ukrainian Antarctic Station “AcademicianVernadsky”. Wintering of the Ukrainian polar explorers is related to the protracted stay on a limit territory that requires adaptation to the social isolationsensory and psychological deprivation in wintering. The aim of the article is to present psychological studies the individually-typology features in wintering people in Antarctica as a prerequisite for psychological adaptation of personality. The scientific developments of domestic and foreign researchers dealing with the problem of adaptation to life in extreme conditions are analyzed. The concept of psychological adaptation to life in extreme conditions is specified; the individually-typology features of winterers are determined; some main methodological tools of psychological research are presented. The main accentuations that are characteristic of winterers are highlighted, and the peculiarities of personality behavior with different types of accentuations are described. Age groups of Ukrainian winterers are defined. The role of age differences in individual-psychological characteristics of winterers are shown in the example of ten Ukrainian Antarctic expeditions. It is proved that the most adapted is the average age group – a person at the age of 35-45. Such results allowed to determine new criteria of psychophysiological and psychological forecasting, and also confirmed necessity of application of psychological researches of Antarctic winterers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Branagan, D. "Carsten Egeberg Borchgrevink (1864-1934): The Man Who Claimed to be the First to Set Foot on Antarctica". Earth Sciences History 33, n.º 1 (1 de janeiro de 2014): 67–121. http://dx.doi.org/10.17704/eshi.33.1.a0768366584n23vv.

Texto completo da fonte
Resumo:
Carsten Borchgrevink continues to be one of the most enigmatic Antarctic explorers. He made two visits to Antarctica, briefly in 1895, and much longer in 1898-1900. Today it is acknowledged that he made significant contributions to Antarctic exploration. He made a claimed first discovery of terrestrial plant life in 1895. He led the first party to winter on Antarctica in 1899 in very difficult weather conditions. His expedition made a year-long continuous record of weather conditions, and glacier movement was briefly measured. Useful zoological data were obtained, but the death of Hanson, the zoologist and loss of some of his records, lessened their possible value. New plants, some insects, and shallow sea-water fauna were discovered. Extensive photographic records were obtained. The 1898-1900 expedition noted the reduction in the seaward extent of the Ross Ice Sheet. It discovered what later became known as the Bay of Whales, and there made the first ascent onto the Ross Sea Barrier, showing that travel inland was feasible in that region, ‘opening the way to the South’. A reasonable estimate of the then position of the South Magnetic Pole was made. In addition Borchgrevink showed the effectiveness of kayaks for local water transport, and dogs with trained dog-handlers for land travel (and companionship). His expedition was underpinned by good planning for housing, equipment (including use of the recently invented Primus Stove), clothing (notably shoes lined with sennegrass) and food. His scientific party was well-chosen for their abilities, but national and social differences played a part in periods of tension with the leader, who was inclined to overestimate his own scientific ability. The achievements of the expedition were given little recognition for most of his life, particularly in Britain, in part because of his initial success, over a period of some years, in gaining financial support for his expedition in the face of strong opposition from ‘official’ British scientific bodies. In addition his rather brash and abrasive personality, some public quarrels and perhaps a rather quirky sense of humour did not make him popular. His achievements have been obscured to some extent by inaccurate and exaggerated criticisms of his activities.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bouvel, Bruno. "`No Exit' in Antarctica". Group Analysis 32, n.º 3 (setembro de 1999): 365–80. http://dx.doi.org/10.1177/0533316499323007.

Texto completo da fonte
Resumo:
This article recounts the experiences of an all-male group of 59 winterers (explorers) who spent almost a year in Antarctica. As well as a group experience, it was also a deep personal experience. For the author; this stay in another world seeming far beyond that of humans was and remains a quasi-spiritual experience, of immersing oneself in the original, untouched splendour of nature, producing a kind of oceanic feeling at the most archaic level of the coself.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Patterson, Diana, Janette G. Simmonds e Tristan L. Snell. "“Savage Beasts,” “Great Companions”: The First Dogs to Winter on the Antarctic Continent". Society & Animals 28, n.º 5-6 (26 de outubro de 2018): 651–69. http://dx.doi.org/10.1163/15685306-12341564.

Texto completo da fonte
Resumo:
Abstract By investigating the nature of the social interactions between “sledge dogs” and explorers in the first land-based exploration in Antarctica, this research contributes to an animal-human perspective in Antarctic historical studies. Consideration of the interspecies interactions provide further insight into attitudes to nonhuman animal welfare, including towards wildlife, at the turn of the twentieth century. The companionship of favored animals appeared to have alleviated some of the stresses of isolation and confinement in the inhospitable Antarctic environment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Nielsen, Hanne E. F., e Cyril Jaksic. "Recruitment advertising for Antarctic personnel: between adventure and routine". Polar Record 54, n.º 1 (janeiro de 2018): 65–75. http://dx.doi.org/10.1017/s0032247418000207.

Texto completo da fonte
Resumo:
ABSTRACTThis paper examines how Antarctica has been depicted in recruitment material, and compares the expectations set up in the advertising imagery with the reality of expeditioners’ experiences. Textual analyses of advertisements and job descriptions are used to reveal dominant themes, including the trope of extremity, while interviews with those who have spent time on the ice provide reflections on the actual challenges encountered when working in Antarctica, such as boredom. Much of the popular discourse around Antarctica continues to centre on the Heroic Era (1895–1922), a time of exploration typified by men pitting themselves against nature and striding out into unchartered expanses of ice. Although modern day life on Antarctic stations differs markedly from the extreme conditions experienced by early explorers, the continent continues to be associated with notions of toughness and extremity. We argue that in some cases, advertisements may actually target the wrong audience. This has important implications for how an Antarctic station as a workplace is conceptualised, and then experienced by those who head south, with potential detrimental effects.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Zhuravel, Valery. "200th anniversary of the discovery of Antarctica: a breakthrough in scientific research is needed". Contemporary Europe, n.º 100 (31 de dezembro de 2020): 227–37. http://dx.doi.org/10.15211/soveurope72020227237.

Texto completo da fonte
Resumo:
The article is devoted to the 200th anniversary of the discovery of Antarctica under the guidance of 2nd rank captain F. Bellingshausen and lieutenant M. Lazarev. Analyzing the peculiarities of Antarctica, the author notes that this is one of а few regions of our planet, the resources and territory of which are used by various states jointly and exclusively for peaceful purposes for the benefit of science. The article analyzes in detail the celebration of this anniversary in Russia and foreign countries, while paying special attention to the thematic focus of socio-political and scientific events. Considerable attention is paid to the study of the region by Russia and the European States. Interstate cooperation between countries in Antarctica is aimed at finding effective solutions to global problems facing humanity, such as environmental pollution, climate change and its consequences, and the loss of components of biological diversity. It is concluded that despite the fact that Antarctica is traditionally one of the strategic regions for ensuring the national interests and security of our state, the Russian Federation in its state policy in comparison with the Arctic, does not always respond promptly to the existing challenges, does not pay enough attention to improving the research base and living conditions of polar explorers, which negatively affects Russia's positions in Antarctica.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ilyin, E. A. "THE PSYCHOLOGICAL STATUS OF THE POLAR EXPLORERS AND ITS PHARMACOCORRECTION IN CONDITIONS OF ANNUAL ISOLATION AT «VOSTOK» STATION IN ANTARCTICA". Aerospace and Environmental Medicine 51, n.º 4 (2017): 5–14. http://dx.doi.org/10.21687/0233-528x-2017-51-4-5-14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Blanchette, Robert A., Benjamin W. Held, Joel A. Jurgens, Douglas L. McNew, Thomas C. Harrington, Shona M. Duncan e Roberta L. Farrell. "Wood-Destroying Soft Rot Fungi in the Historic Expedition Huts of Antarctica". Applied and Environmental Microbiology 70, n.º 3 (março de 2004): 1328–35. http://dx.doi.org/10.1128/aem.70.3.1328-1335.2004.

Texto completo da fonte
Resumo:
ABSTRACT Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Edinburgh, Tom, e Jonathan J. Day. "Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration". Cryosphere 10, n.º 6 (21 de novembro de 2016): 2721–30. http://dx.doi.org/10.5194/tc-10-2721-2016.

Texto completo da fonte
Resumo:
Abstract. In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897–1917), and in this study we compare these to satellite observations from the period 1989–2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

ISERSON, KENNETH V. "Bioethical Issues in Antarctica". Cambridge Quarterly of Healthcare Ethics 30, n.º 1 (29 de dezembro de 2020): 136–45. http://dx.doi.org/10.1017/s0963180120000638.

Texto completo da fonte
Resumo:
AbstractThis paper describes the Antarctic environment, the mission and work setting at the U.S. research stations, the general population and living conditions, and the healthcare situation. It also dispels some common misconceptions that persist about this environment and about the scope and quality of medicine practiced there. The paper then describes specific ethical issues that arise in this environment, incorporating examples drawn from both the author’s experiences and those of his colleagues. The ethics of providing healthcare in resource-poor environments implies two related questions. The first is: What can we do with the available resources? This suggests that clinicians must not only know how to use all available equipment and supplies in the standard manner, but also that they must be willing and able to go beyond standard procedures and improvise, when necessary. The second question is: Of all the things we can do, which ones should we do? This paper addresses both questions in relation to Antarctic medical care. It describes the wide range of activities required of healthcare providers and some specific ethical issues that arise. Finally, it suggests some remedies to ameliorate some of those issues.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Dalesman, Sarah. "Habitat and social context affect memory phenotype, exploration and covariance among these traits". Philosophical Transactions of the Royal Society B: Biological Sciences 373, n.º 1756 (13 de agosto de 2018): 20170291. http://dx.doi.org/10.1098/rstb.2017.0291.

Texto completo da fonte
Resumo:
Individual differences in cognitive ability are predicted to covary with other behavioural traits such as exploration and boldness. Selection within different habitats may act to either enhance or break down covariance among traits; alternatively, changing the environmental context in which traits are assessed may result in plasticity that alters trait covariance. Pond snails, Lymnaea stagnalis , from two laboratory strains (more than 20 generations in captivity) and F1 laboratory reared from six wild populations were tested for long-term memory and exploration traits (speed and thigmotaxis) following maintenance in grouped and isolated conditions to determine if isolation: (i) alters memory and exploration; and (ii) alters covariance between memory and exploration. Populations that demonstrated strong memory formation (longer duration) under grouped conditions demonstrated weaker memory formation and reduced both speed and thigmotaxis following isolation. In wild populations, snails showed no relationship between memory and exploration in grouped conditions; however, following isolation, exploration behaviour was negatively correlated with memory, i.e. slow-explorers showing low levels of thigmotaxis formed stronger memories. Laboratory strains demonstrated no covariance among exploration traits and memory independent of context. Together these data demonstrate that the relationship between cognition and exploration traits can depend on both habitat and context-specific trait plasticity. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Henrich, Joseph. "Demography and Cultural Evolution: How Adaptive Cultural Processes Can Produce Maladaptive Losses—The Tasmanian Case". American Antiquity 69, n.º 2 (abril de 2004): 197–214. http://dx.doi.org/10.2307/4128416.

Texto completo da fonte
Resumo:
A combination of archeological and ethnohistorical evidence indicates that, over an approximately 8,000-year period, from the beginning of the Holocene until European explorers began arriving in the eighteenth century, the societies of Tasmania lost a series of valuable skills and technologies. These likely included bone tools, cold-weather clothing, hafted tools, nets, fishing spears, barbed spears, spear-throwers, and boomerangs. To address this puzzle, and the more general question of how human cognition and social interaction can generate both adaptive cultural evolution and maladaptive losses of culturally acquired skills, this paper constructs a formal model of cultural evolution rooted in the cognitive details of human social learning and inference. The analytical results specify the conditions for differing rates of adaptive cultural evolution, and reveal regimes that will produce maladaptive losses of particular kinds of skills and related technologies. More specifically, the results suggest that the relatively sudden reduction in the effective population size (the size of the interacting pool of social learners) that occurred with the rising ocean levels at the end of the last glacial epoch, which cut Tasmania off from the rest of Australia for the ensuing ten millennia, could have initiated a cultural evolutionary process that (1) kept stable or even improved relatively simple technological skills, and (2) produced an increasing deterioration of more complex skills leading to the complete disappearance of some technologies and practices. This pattern is consistent with the empirical record in Tasmania. Beyond this case, I speculate on the applicability of the model to understanding the variability in rates of adaptive cultural evolution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Namsaraeva, Sayana B. "О новом источнике «устной истории» бурят о паломничестве по Внутренней Азии в начале XX в." Oriental Studies 13, n.º 6 (30 de dezembro de 2020): 1558–67. http://dx.doi.org/10.22162/2619-0990-2020-52-6-1558-1567.

Texto completo da fonte
Resumo:
Introduction. Research on Buryat and Kalmyk pilgrimage to Buddhist worshiping sites in Tibet and wider in Inner Asia at the late imperial period mostly focuses on biographies and travel writings of Buddhist clergy, while experience of ordinary pilgrims ― especially of the lay people (Mong. khara khün) who were actors of this social phenomena ― received limited attention. However, some of the Buryat ‘oral histories’ about long distance travels to Tibet were recorded later by Buryat intellectuals (e. g., B. B. Baradiin) to name but a few. Goals. The article aims to introduce one such record made in 1968 by a rural community school teacher and amateur historian B. B. Namsaraev. Results. The latter wrote down a life story (Mong. namtar) of Bato Badmaev, an elder from the village of Suduntui, about his pilgrimage to Tibet between 1901 and 1904. This travelogue by a lay person presents unique first-hand observations about hardships of the long distance foot pilgrimage to worshiping places in Urga, Amdo and Tibet ― a wide social phenomenon among Buryats at the beginning of the 20th century. This ‘oral history’ together with extensive information about infrastructure along the pilgrim routes (Mongolian and Tibetan families hosting pilgrims and providing meals to them, travel tips they shared of how to pass the most dangerous hostile deserts and mountain passes, encountering a yeti snowman (Mong. almaz), etc.) contain emotional remarks about things experienced and bodily hardships pilgrims faced (thirst, physical exhaustion, extreme temperatures, and so on) ― aspects which are not covered in travelogues of Buddhist clergy and professional explorers (e. g., merchants, military specialists) who were in much more privileged travel conditions hiring horses and camels to carry their goods and belongings. Therefore, the recent publication (2012) of this unique travelogue made it more accessible and available to a wider audience.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Veselskyi, M. F., e P. B. Khoyetskyy. "Behaviour and breeding peculiarities of the Snowy Sheathbill (Chionis alba Gmelin, 1789) in the water area of the Argentine Islands archipelago and adjacent territories (Graham Land, Antarctic Peninsula)". “Branta”: Transactions of the Azov-Black Sea Ornithological Station 2020, n.º 23 (17 de dezembro de 2020): 26–40. http://dx.doi.org/10.15407/branta2020.23.026.

Texto completo da fonte
Resumo:
Systematic studies of the ornithofauna of the Argentine Islands archipelago by Ukrainian polar explorers began in the second half of the 90s. At the beginning of the XXI-st century, the southernmost breeding site of the Snowy Sheathbill (Chionis alba), Petermann Island, was discovered by Ukrainian ornithologists; later, nesting within the Argentine Islands archipelago was recorded. Breeding and behavioural peculiarities of the Snowy Sheathbill were studied during the XX-th (April 2015 - March 2016) and the XXIII-rd (April 2018 – March 2019) Ukrainian Antarctic expeditions, in accordance with the objectives of the State Target Scientific and Technical Research Program of Ukraine in Antarctica for 2010-2020. The distribution, abundance and detection of the Snowy Sheathbill nesting sites were investigated according to generally accepted methods, by means of surveys on permanent routes, and also by the method of point counting at Cape Marina Point on Galindez Island. During the reporting period, more than 400 hours were spent on conducting morning surveys and recording. The Snowy Sheathbill nests were examined on Galindez and Petermann Islands, the sites of probable breeding were investigated on Uruguay Island and Cape Tuxen (Antarctic Peninsula). In the spring of 2015, at Cape Marina Point on Galindez Island, breeding of one pair of the Snowy Sheathbill was recorded, and in the spring of 2018 – breeding of two pairs. In the spring of 2018, clutches on Galindez Island were registered: in the first clutch - three eggs, in the other – four ones. The average egg weight was 41.0 ± 0.8 (standard deviation – 1.9 g). Under favourable nesting conditions, the hatching of the first chicks is possible in late December. The average weight of newly hatched chicks was 33.3 ± 3.6 g. From January 19 to February 28, 2018, three chicks were weighed: the average increase in the weight of the first chick was 17.9 ± 1.3 g (standard deviation 7.6 g); the increase in the weight of the second one was 17.4 ± 1.3 g (standard deviation 7.7 g); the average increase in the weight of the third chick was smaller than in previous ones and amounted to 13.8 ± 1.5 g. The days without increase in weight were recorded: for the first chick such days were on February 19, 25, 28, for the second one only two days – on February 24 and 28; for the third chick - five days (on February 4, 13, 15, 27, 28). On the 41st day, the weight of the first chick was 680 g, the second one weighed 670 g, and the weight of the third chick was about 480 g. on the 40th day.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Clarissa, Clò, e Fiore Teresa. "Unlikely Connections: Italy’s Cultural Formations between Home and the Diaspora". Diaspora: A Journal of Transnational Studies 10, n.º 3 (dezembro de 2001): 415–41. http://dx.doi.org/10.3138/diaspora.10.3.415.

Texto completo da fonte
Resumo:
Movements of people and exchanges among them have been crucial in the characterization of societies. Different cultures have understood and regarded migrants differently, depending on the historical conditions, material and discursive, in which these movements occurred and on the attitudes of both sending and receiving states. It is, indeed, through the lens of the nation-state and of individual national histories that migrations and diasporas have mostly been approached. This model, however, does not allow for a more comprehensive understanding of people’s traveling and resettling across space and time, which both predate and go beyond the boundaries imposed by the emergence of modern states. Furthermore, the national model of migration does not adequately take into account all the human components that these travels entail—for example, the ways in which migrants themselves contribute to the shaping of the societies they leave and to the ones they enter into. In this essay, we use the term “migrants” to refer to a wide range of groups, whose decisions to move were prompted by different reasons: internal and external labor migrants, explorers, colonizers, ex-colonized, merchants, artists, intellectuals, and so on. In the process of moving and relocating, all these communities collectively generate, along with the locals, new cultural formations: ideas, collaborations, subjectivities, as well as social and political institutions, which are situated between and across, and simultaneously encompass, “home” and “abroad.” These cultural formations constitute an integral part of the diasporic experiences inscribed within a global set of connections. In this study, we privilege the analysis of the relation among migrants and their cultural productions, and pay specific attention to “unlikely connections” among diverse diasporas. This approach, based on unusual linkages among separate disciplines, migrant groups, historical periods, and geographical locations, allows us to identify and participate in the process of reframing the content and methodology of Diaspora Studies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Dey, Valentin A., Svetlana V. Polishchuk e Vladimir M. Pokrovskiy. "Influence of Sleep–Wake Patterns on the Body’s Adaptive Capabilities During Antarctic Wintering". Journal of Medical and Biological Research, n.º 2 (9 de maio de 2021): 138–44. http://dx.doi.org/10.37482/2687-1491-z051.

Texto completo da fonte
Resumo:
This article studies the influence of the sleep pattern (duration of uninterrupted sleep and rhythm of sleep periods) on the condition of the body’s adaptive resources during a year-round stay at a research station in Antarctica. We compared two cases that coincide in most parameters of daily life (living conditions, influence of environmental factors, level of social contacts, anthropometric data, and health status), but differ in terms of day regimen due to work activities. To assess the body’s adaptive capabilities, the index of regulatory and adaptive status (IRAS) was used, calculated by parameters obtained by the method of cardio-respiratory synchronism. The first subject (a radio operator) showed IRAS dynamics coinciding with deterioration and improvement of environmental conditions (daylight hours, weather conditions) affecting the Antarctic station staff, which was a predicted result. The second subject (a meteorologist) demonstrated a fundamentally different dynamics of the body’s adaptive capabilities: during deterioration of environmental conditions, the body’s adaptive resources increased due to lower work intensity and, as a result, a significant improvement in the sleep pattern. IRAS dynamics showed that the amount and quality of sleep has a more significant impact on human health than adverse weather conditions (storms). This opens up a wide range of opportunities to compensate for unavoidable adverse environmental conditions and help to preserve, as much as possible, the capacity for work in members of polar expeditions during wintering, as sudden decompensation can cause disruption to ongoing programmes at the research station. For citation: Dey V.A., Polishchuk S.V., Pokrovskiy V.M. Influence of Sleep–Wake Patterns on the Body’s Adaptive Capabilities During Antarctic Wintering. Journal of Medical and Biological Research, 2021, vol. 9, no. 2, pp. 138–144. DOI: 10.37482/2687-1491-Z051
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Nesrine, Lenchi, Kebbouche Salima, Khelfaoui Mohamed Lamine, Laddada Belaid, BKhemili Souad, Gana Mohamed Lamine, Akmoussi Sihem e Ferioune Imène. "Phylogenetic characterization and screening of halophilic bacteria from Algerian salt lake for the production of biosurfactant and enzymes". World Journal of Biology and Biotechnology 5, n.º 2 (15 de agosto de 2020): 1. http://dx.doi.org/10.33865/wjb.005.02.0294.

Texto completo da fonte
Resumo:
Environments containing significant concentration of NaCl such as salt lakes harbor extremophiles microorganisms which have a great biotechnology interest. To explore the diversity of Bacteria in Chott Tinsilt (Algeria), an isolation program was performed. Water samples were collected from the saltern during the pre-salt harvesting phase. This Chott is high in salt (22.47% (w/v). Seven halophiles Bacteria were selected for further characterization. The isolated strains were able to grow optimally in media with 10–25% (w/v) total salts. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. It showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus genera with less than 98% of similarity with their closest phylogenetic relative. The halophilic bacterial isolates were also characterized for the production of biosurfactant and industrially important enzymes. Most isolates produced hydrolases and biosurfactants at high salt concentration. In fact, this is the first report on bacterial strains (A4 and B4) which were a good biosurfactant and coagulase producer at 20% and 25% ((w/v)) NaCl. In addition, the biosurfactant produced by the strain B4 at high salinity (25%) was also stable at high temperature (30-100°C) and high alkalinity (pH 11).Key word: Salt Lake, Bacteria, biosurfactant, Chott, halophiles, hydrolases, 16S rRNAINTRODUCTIONSaline lakes cover approximately 10% of the Earth’s surface area. The microbial populations of many hypersaline environments have already been studied in different geographical regions such as Great Salt Lake (USA), Dead Sea (Israel), Wadi Natrun Lake (Egypt), Lake Magadi (Kenya), Soda Lake (Antarctica) and Big Soda Lake and Mono Lake (California). Hypersaline regions differ from each other in terms of geographical location, salt concentration and chemical composition, which determine the nature of inhabitant microorganisms (Gupta et al., 2015). Then low taxonomic diversity is common to all these saline environments (Oren et al., 1993). Halophiles are found in nearly all major microbial clades, including prokaryotic (Bacteria and Archaea) and eukaryotic forms (DasSarma and Arora, 2001). They are classified as slight halophiles when they grow optimally at 0.2–0.85 M (2–5%) NaCl, as moderate halophiles when they grow at 0.85–3.4 M (5–20%) NaCl, and as extreme halophiles when they grow at 3.4–5.1 M (20–30%) NaCl. Hyper saline environments are inhabited by extremely halophilic and halotolerant microorganisms such as Halobacillus sp, Halobacterium sp., Haloarcula sp., Salinibacter ruber , Haloferax sp and Bacillus spp. (Solomon and Viswalingam, 2013). There is a tremendous demand for halophilic bacteria due to their biotechnological importance as sources of halophilic enzymes. Enzymes derived from halophiles are endowed with unique structural features and catalytic power to sustain the metabolic and physiological processes under high salt conditions. Some of these enzymes have been reported to be active and stable under more than one extreme condition (Karan and Khare, 2010). Applications are being considered in a range of industries such as food processing, washing, biosynthetic processes and environmental bioremediation. Halophilic proteases are widely used in the detergent and food industries (DasSarma and Arora, 2001). However, esterases and lipases have also been useful in laundry detergents for the removal of oil stains and are widely used as biocatalysts because of their ability to produce pure compounds. Likewise, amylases are used industrially in the first step of the production of high fructose corn syrup (hydrolysis of corn starch). They are also used in the textile industry in the de-sizing process and added to laundry detergents. Furthermore, for the environmental applications, the use of halophiles for bioremediation and biodegradation of various materials from industrial effluents to soil contaminants and accidental spills are being widely explored. In addition to enzymes, halophilic / halotolerants microorganisms living in saline environments, offer another potential applications in various fields of biotechnology like the production of biosurfactant. Biosurfactants are amphiphilic compounds synthesized from plants and microorganisms. They reduce surface tension and interfacial tension between individual molecules at the surface and interface respectively (Akbari et al., 2018). Comparing to the chemical surfactant, biosurfactant are promising alternative molecules due to their low toxicity, high biodegradability, environmental capability, mild production conditions, lower critical micelle concentration, higher selectivity, availability of resources and ability to function in wide ranges of pH, temperature and salinity (Rocha et al., 1992). They are used in various industries which include pharmaceuticals, petroleum, food, detergents, cosmetics, paints, paper products and water treatment (Akbari et al., 2018). The search for biosurfactants in extremophiles is particularly promising since these biomolecules can adapt and be stable in the harsh environments in which they are to be applied in biotechnology.OBJECTIVESEastern Algeria features numerous ecosystems including hypersaline environments, which are an important source of salt for food. The microbial diversity in Chott Tinsilt, a shallow Salt Lake with more than 200g/L salt concentration and a superficies of 2.154 Ha, has never yet been studied. The purpose of this research was to chemically analyse water samples collected from the Chott, isolate novel extremely or moderate halophilic Bacteria, and examine their phenotypic and phylogenetic characteristics with a view to screening for biosurfactants and enzymes of industrial interest.MATERIALS AND METHODSStudy area: The area is at 5 km of the Commune of Souk-Naâmane and 17 km in the South of the town of Aïn-Melila. This area skirts the trunk road 3 serving Constantine and Batna and the railway Constantine-Biskra. It is part the administrative jurisdiction of the Wilaya of Oum El Bouaghi. The Chott belongs to the wetlands of the High Plains of Constantine with a depth varying rather regularly without never exceeding 0.5 meter. Its length extends on 4 km with a width of 2.5 km (figure 1).Water samples and physico-chemical analysis: In February 2013, water samples were collected from various places at the Chott Tinsilt using Global Positioning System (GPS) coordinates of 35°53’14” N lat. and 06°28’44”E long. Samples were collected randomly in sterile polythene bags and transported immediately to the laboratory for isolation of halophilic microorganisms. All samples were treated within 24 h after collection. Temperature, pH and salinity were measured in situ using a multi-parameter probe (Hanna Instruments, Smithfield, RI, USA). The analytical methods used in this study to measure ions concentration (Ca2+, Mg2+, Fe2+, Na+, K+, Cl−, HCO3−, SO42−) were based on 4500-S-2 F standard methods described elsewhere (Association et al., 1920).Isolation of halophilic bacteria from water sample: The media (M1) used in the present study contain (g/L): 2.0 g of KCl, 100.0/200.0 g of NaCl, 1.0 g of MgSO4.7HO2, 3.0 g of Sodium Citrate, 0.36 g of MnCl2, 10.0 g of yeast extract and 15.0 g agar. The pH was adjusted to 8.0. Different dilutions of water samples were added to the above medium and incubated at 30°C during 2–7 days or more depending on growth. Appearance and growth of halophilic bacteria were monitored regularly. The growth was diluted 10 times and plated on complete medium agar (g/L): glucose 10.0; peptone 5.0; yeast extract 5.0; KH2PO4 5.0; agar 30.0; and NaCl 100.0/200.0. Resultant colonies were purified by repeated streaking on complete media agar. The pure cultures were preserved in 20% glycerol vials and stored at −80°C for long-term preservation.Biochemical characterisation of halophilic bacterial isolates: Bacterial isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (catalase, oxidase, nitrate reductase and urease), and assays for fermentation of lactose and mannitol were done as described by Smibert (1994).Optimization of growth conditions: Temperature, pH, and salt concentration were optimized for the growth of halophilic bacterial isolates. These growth parameters were studied quantitatively by growing the bacterial isolates in M1 medium with shaking at 200 rpm and measuring the cell density at 600 nm after 8 days of incubation. To study the effect of NaCl on the growth, bacterial isolates were inoculated on M1 medium supplemented with different concentration of NaCl: 1%-35% (w/v). The effect of pH on the growth of halophilic bacterial strains was studied by inoculating isolates on above described growth media containing NaCl and adjusted to acidic pH of 5 and 6 by using 1N HCl and alkaline pH of 8, 9, 10, 11 and 12 using 5N NaOH. The effect of temperature was studied by culturing the bacterial isolates in M1 medium at different temperatures of incubation (4°C–55°C).Screening of halophilic bacteria for hydrolytic enzymes: Hydrolase producing bacteria among the isolates were screened by plate assay on starch, tributyrin, gelatin and DNA agar plates respectively for amylase, lipase, protease and DNAse activities. Amylolytic activity of the cultures was screened on starch nutrient agar plates containing g/L: starch 10.0; peptone 5.0; yeast extract 3.0; agar 30.0; NaCl 100.0/250.0. The pH was 7.0. After incubation at 30 ºC for 7 days, the zone of clearance was determined by flooding the plates with iodine solution. The potential amylase producers were selected based on ratio of zone of clearance diameter to colony diameter. Lipase activity of the cultures was screened on tributyrin nutrient agar plates containing 1% (v/v) of tributyrin. Isolates that showed clear zones of tributyrin hydrolysis were identified as lipase producing bacteria. Proteolytic activity of the isolates was similarly screened on gelatin nutrient agar plates containing 10.0 g/L of gelatin. The isolates showing zones of gelatin clearance upon treatment with acidic mercuric chloride were selected and designated as protease producing bacteria. The presence of DNAse activity on plates was determined on DNAse test agar (BBL) containing 10%-25% (w/v) total salt. After incubation for 7days, the plates were flooded with 1N HCl solution. Clear halos around the colonies indicated DNAse activity (Jeffries et al., 1957).Milk clotting activity (coagulase activity) of the isolates was also determined following the procedure described (Berridge, 1952). Skim milk powder was reconstituted in 10 mM aqueous CaCl2 (pH 6.5) to a final concentration of 0.12 kg/L. Enzyme extracts were added at a rate of 0.1 mL per mL of milk. The coagulation point was determined by manual rotating of the test tube periodically, at short time intervals, and checking for visible clot formation.Screening of halophilic bacteria for biosurfactant production. Oil spread Assay: The Petridis base was filled with 50 mL of distilled water. On the water surface, 20μL of diesel and 10μl of culture were added respectively. The culture was introduced at different spots on the diesel, which is coated on the water surface. The occurrence of a clear zone was an indicator of positive result (Morikawa et al., 2000). The diameter of the oil expelling circles was measured by slide caliber (with a degree of accuracy of 0.02 mm).Surface tension and emulsification index (E24): Isolates were cultivated at 30 °C for 7 days on the enrichment medium containing 10-25% NaCl and diesel oil as the sole carbon source. The medium was centrifuged (7000 rpm for 20 min) and the surface tension of the cell-free culture broth was measured with a TS90000 surface tensiometer (Nima, Coventry, England) as a qualitative indicator of biosurfactant production. The culture broth was collected with a Pasteur pipette to remove the non-emulsified hydrocarbons. The emulsifying capacity was evaluated by an emulsification index (E24). The E24 of culture samples was determined by adding 2 mL of diesel oil to the same amount of culture, mixed for 2 min with a vortex, and allowed to stand for 24 h. E24 index is defined as the percentage of height of emulsified layer (mm) divided by the total height of the liquid column (mm).Biosurfactant stability studies : After growth on diesel oil as sole source of carbone, cultures supernatant obtained after centrifugation at 6,000 rpm for 15 min were considered as the source of crude biosurfactant. Its stability was determined by subjecting the culture supernatant to various temperature ranges (30, 40, 50, 60, 70, 80 and 100 °C) for 30 min then cooled to room temperature. Similarly, the effect of different pH (2–11) on the activity of the biosurfactant was tested. The activity of the biosurfactant was investigated by measuring the emulsification index (El-Sersy, 2012).Molecular identification of potential strains. DNA extraction and PCR amplification of 16S rDNA: Total cellular DNA was extracted from strains and purified as described by Sambrook et al. (1989). DNA was purified using Geneclean® Turbo (Q-BIO gene, Carlsbad, CA, USA) before use as a template in polymerase chain reaction (PCR) amplification. For the 16S rDNA gene sequence, the purified DNA was amplified using a universal primer set, forward primer (27f; 5′-AGA GTT TGA TCM TGG CTC AG) and a reverse primer (1492r; 5′-TAC GGY TAC CTT GTT ACG ACT T) (Lane, 1991). Agarose gel electrophoresis confirmed the amplification product as a 1400-bp DNA fragment.16S rDNA sequencing and Phylogenic analysis: Amplicons generated using primer pair 27f-1492r was sequenced using an automatic sequencer system at Macrogene Company (Seoul, Korea). The sequences were compared with those of the NCBI BLAST GenBank nucleotide sequence databases. Phylogenetic trees were constructed by the neighbor-joining method using MEGA version 5.05 software (Tamura et al., 2011). Bootstrap resembling analysis for 1,000 replicates was performed to estimate the confidence of tree topologies.Nucleotide sequence accession numbers: The nucleotide sequences reported in this work have been deposited in the EMBL Nucleotide Sequence Database. The accession numbers are represented in table 5.Statistics: All experiments were conducted in triplicates. Results were evaluated for statistical significance using ANOVA.RESULTSPhysico-chemical parameters of the collected water samples: The physicochemical properties of the collected water samples are reported in table 1. At the time of sampling, the temperature was 10.6°C and pH 7.89. The salinity of the sample, as determined in situ, was 224.70 g/L (22,47% (w/v)). Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions (table 1). SO4-2 and Mg+2 was present in much smaller amounts compared to Na +and Cl- concentration. Low levels of calcium, potassium and bicarbonate were also detected, often at less than 1 g/L.Characterization of isolates. Morphological and biochemical characteristic feature of halophilic bacterial isolates: Among 52 strains isolated from water of Chott Tinsilt, seven distinct bacteria (A1, A2, A3, A4, B1, B4 and B5) were chosen for further characterization (table 2). The colour of the isolates varied from beige, pale yellow, yellowish and orange. The bacterial isolates A1, A2, A4, B1 and B5 were rod shaped and gram negative (except B5), whereas A3 and B4 were cocci and gram positive. All strains were oxidase and catalase positive except for B1. Nitrate reductase and urease activities were observed in all the bacterial isolates, except B4. All the bacterial isolates were negative for H2S formation. B5 was the only strain positive for mannitol fermentation (table 2).We isolated halophilic bacteria on growth medium with NaCl supplementation at pH 7 and temperature of 30°C. We studied the effect of NaCl, temperature and pH on the growth of bacterial isolates. All the isolates exhibited growth only in the presence of NaCl indicating that these strains are halophilic. The optimum growth of isolates A3 and B1 was observed in the presence of 10% NaCl, whereas it was 15% NaCl for A1, A2 and B5. A4 and B4 showed optimum growth in the presence of 20% and 25% NaCl respectively. A4, B4 and B5 strains can tolerate up to 35% NaCl.The isolate B1 showed growth in medium supplemented with 10% NaCl and pH range of 7–10. The optimum pH for the growth B1 was 9 and they did not show any detectable growth at or below pH 6 (table 2), which indicates the alkaliphilic nature of B1 isolate. The bacterial isolates A1, A2 and A4 exhibited growth in the range of pH 6–10, while A3 and B4 did not show any growth at pH greater than 8. The optimum pH for growth of all strains (except B1) was pH 7.0 (table 2). These results indicate that A1, A2, A3, A4, B4 and B5 are neutrophilic in nature. All the bacterial isolates exhibited optimal growth at 30°C and no detectable growth at 55°C. Also, detectable growth of isolates A1, A2 and A4 was observed at 4°C. However, none of the bacterial strains could grow below 4°C and above 50°C (table 2).Screening of the halophilic enzymes: To characterize the diversity of halophiles able to produce hydrolytic enzymes among the population of microorganisms inhabiting the hypersaline habitats of East Algeria (Chott Tinsilt), a screening was performed. As described in Materials and Methods, samples were plated on solid media containing 10%-25% (w/v) of total salts and different substrates for the detection of amylase, protease, lipase and DNAse activities. However, coagulase activity was determined in liquid medium using milk as substrate (figure 3). Distributions of hydrolytic activity among the isolates are summarized in table 4.From the seven bacterial isolates, four strains A1, A2, A4 and B5 showed combined hydrolytic activities. They were positive for gelatinase, lipase and coagulase. A3 strain showed gelatinase and lipase activities. DNAse activities were detected with A1, A4, B1 and B5 isolates. B4 presented lipase and coagulase activity. Surprisingly, no amylase activity was detected among all the isolates.Screening for biosurfactant producing isolates: Oil spread assay: The results showed that all the strains could produce notable (>4 cm diameter) oil expelling circles (ranging from 4.11 cm to 4.67 cm). The average diameter for strain B5 was 4.67 cm, significantly (P < 0.05) higher than for the other strains.Surface tension and emulsification index (E24): The assimilation of hydrocarbons as the sole sources of carbon by the isolate strains led to the production of biosurfactants indicated by the emulsification index and the lowering of the surface tension of cell-free supernatant. Based on rapid growth on media containing diesel oil as sole carbon source, the seven isolates were tested for biosurfactant production and emulsification activity. The obtained values of the surface tension measurements as well as the emulsification index (E24) are shown in table 3. The highest reduction of surface tension was achieved with B5 and A3 isolates with values of 25.3 mN m−1 and 28.1 mN m−1 respectively. The emulsifying capacity evaluated by the E24 emulsification index was highest in the culture of isolate B4 (78%), B5 (77%) and A3 (76%) as shown in table 3 and figure 2. These emulsions were stable even after 4 months. The bacteria with emulsification indices higher than 50 % and/or reduction in the surface tension (under 30 mN/m) have been defined as potential biosurfactant producers. Based on surface tension and the E24 index results, isolates B5, B4, A3 and A4 are the best candidates for biosurfactant production. It is important to note that, strains B4 and A4 produce biosurfactant in medium containing respectively 25% and 20% (w/v) NaCl.Stability of biosurfactant activities: The applicability of biosurfactants in several biotechnological fields depends on their stability at different environmental conditions (temperatures, pH and NaCl). For this study, the strain B4 appear very interesting (It can produce biosurfactant at 25 % NaCl) and was choosen for futher analysis for biosurfactant stability. The effects of temperature and pH on the biosurfactant production by the strain B4 are shown in figure 4.biosurfactant in medium containing respectively 25% and 20% (w/v) NaCl.Stability of biosurfactant activities: The applicability of biosurfactants in several biotechnological fields depends on their stability at different environmental conditions (temperatures, pH and NaCl). For this study, the strain B4 appear very interesting (It can produce biosurfactant at 25 % NaCl) and was chosen for further analysis for biosurfactant stability. The effects of temperature and pH on the biosurfactant production by the strain B4 are shown in figure 4. The biosurfactant produced by this strain was shown to be thermostable giving an E-24 Index value greater than 78% (figure 4A). Heating of the biosurfactant to 100 °C caused no significant effect on the biosurfactant performance. Therefore, the surface activity of the crude biosurfactant supernatant remained relatively stable to pH changes between pH 6 and 11. At pH 11, the value of E24 showed almost 76% activity, whereas below pH 6 the activity was decreased up to 40% (figure 4A). The decreases of the emulsification activity by decreasing the pH value from basic to an acidic region; may be due to partial precipitation of the biosurfactant. This result indicated that biosurfactant produced by strain B4 show higher stability at alkaline than in acidic conditions.Molecular identification and phylogenies of potential isolates: To identify halophilic bacterial isolates, the 16S rDNA gene was amplified using gene-specific primers. A PCR product of ≈ 1.3 kb was detected in all the seven isolates. The 16S rDNA amplicons of each bacterial isolate was sequenced on both strands using 27F and 1492R primers. The complete nucleotide sequence of 1336,1374, 1377,1313, 1305,1308 and 1273 bp sequences were obtained from A1, A2, A3, A4, B1, B4 and B5 isolates respectively, and subjected to BLAST analysis. The 16S rDNA sequence analysis showed that the isolated strains belong to the genera Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus as shown in table 5. The halophilic isolates A2 and A4 showed 97% similarity with the Halomonas variabilis strain GSP3 (accession no. AY505527) and the Halomonas sp. M59 (accession no. AM229319), respectively. As for A1, it showed 96% similarity with the Halomonas venusta strain GSP24 (accession no. AY553074). B1 and B4 showed for their part 96% similarity with the Salinivibrio costicola subsp. alcaliphilus strain 18AG DSM4743 (accession no. NR_042255) and the Planococcus citreus (accession no. JX122551), respectively. The bacterial isolate B5 showed 98% sequence similarity with the Halobacillus trueperi (accession no. HG931926), As for A3, it showed only 95% similarity with the Staphylococcus arlettae (accession no. KR047785). The 16S rDNA nucleotide sequences of all the seven halophilic bacterial strains have been submitted to the NCBI GenBank database under the accession number presented in table 5. The phylogenetic association of the isolates is shown in figure 5.DICUSSIONThe physicochemical properties of the collected water samples indicated that this water was relatively neutral (pH 7.89) similar to the Dead Sea and the Great Salt Lake (USA) and in contrast to the more basic lakes such as Lake Wadi Natrun (Egypt) (pH 11) and El Golea Salt Lake (Algeria) (pH 9). The salinity of the sample was 224.70 g/L (22,47% (w/v). This range of salinity (20-30%) for Chott Tinsilt is comparable to a number of well characterized hypersaline ecosystems including both natural and man-made habitats, such as the Great Salt Lake (USA) and solar salterns of Puerto Rico. Thus, Chott Tinsilt is a hypersaline environment, i.e. environments with salt concentrations well above that of seawater. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions, as in most hypersaline ecosystems (with some exceptions such as the Dead Sea). These chemical water characteristics were consistent with the previously reported data in other hypersaline ecosystems (DasSarma and Arora, 2001; Oren, 2002; Hacěne et al., 2004). Among 52 strains isolated from this Chott, seven distinct bacteria (A1, A2, A3, A4, B1, B4 and B5) were chosen for phenotypique, genotypique and phylogenetique characterization.The 16S rDNA sequence analysis showed that the isolated strains belong to the genera Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus. Genera obtained in the present study are commonly occurring in various saline habitats across the globe. Staphylococci have the ability to grow in a wide range of salt concentrations (Graham and Wilkinson, 1992; Morikawa et al., 2009; Roohi et al., 2014). For example, in Pakistan, Staphylococcus strains were isolated from various salt samples during the study conducted by Roohi et al. (2014) and these results agreed with previous reports. Halomonas, halophilic and/or halotolerant Gram-negative bacteria are typically found in saline environments (Kim et al., 2013). The presence of Planococcus and Halobacillus has been reported in studies about hypersaline lakes; like La Sal del Rey (USA) (Phillips et al., 2012) and Great Salt Lake (Spring et al., 1996), respectively. The Salinivibrio costicola was a representative model for studies on osmoregulatory and other physiological mechanisms of moderately halophilic bacteria (Oren, 2006).However, it is interesting to note that all strains shared less than 98.7% identity (the usual species cut-off proposed by Yarza et al. (2014) with their closest phylogenetic relative, suggesting that they could be considered as new species. Phenotypic, genetic and phylogenetic analyses have been suggested for the complete identification of these strains. Theses bacterial strains were tested for the production of industrially important enzymes (Amylase, protease, lipase, DNAse and coagulase). These isolates are good candidates as sources of novel enzymes with biotechnological potential as they can be used in different industrial processes at high salt concentration (up to 25% NaCl for B4). Prominent amylase, lipase, protease and DNAase activities have been reported from different hypersaline environments across the globe; e.g., Spain (Sánchez‐Porro et al., 2003), Iran (Rohban et al., 2009), Tunisia (Baati et al., 2010) and India (Gupta et al., 2016). However, to the best of our knowledge, the coagulase activity has never been detected in extreme halophilic bacteria. Isolation and characterization of crude enzymes (especially coagulase) to investigate their properties and stability are in progress.The finding of novel enzymes with optimal activities at various ranges of salt concentrations is of great importance. Besides being intrinsically stable and active at high salt concentrations, halophilic and halotolerant enzymes offer great opportunities in biotechnological applications, such as environmental bioremediation (marine, oilfiel) and food processing. The bacterial isolates were also characterized for production of biosurfactants by oil-spread assay, measurement of surface tension and emulsification index (E24). There are few reports on biosurfactant producers in hypersaline environments and in recent years, there has been a greater increase in interest and importance in halophilic bacteria for biomolecules (Donio et al., 2013; Sarafin et al., 2014). Halophiles, which have a unique lipid composition, may have an important role to play as surface-active agents. The archae bacterial ether-linked phytanyl membrane lipid of the extremely halophilic bacteria has been shown to have surfactant properties (Post and Collins, 1982). Yakimov et al. (1995) reported the production of biosurfactant by a halotolerant Bacillus licheniformis strain BAS 50 which was able to produce a lipopeptide surfactant when cultured at salinities up to 13% NaCl. From solar salt, Halomonas sp. BS4 and Kocuria marina BS-15 were found to be able to produce biosurfactant when cultured at salinities of 8% and 10% NaCl respectively (Donio et al., 2013; Sarafin et al., 2014). In the present work, strains B4 and A4 produce biosurfactant in medium containing respectively 25% and 20% NaCl. To our knowledge, this is the first report on biosurfactant production by bacteria under such salt concentration. Biosurfactants have a wide variety of industrial and environmental applications (Akbari et al., 2018) but their applicability depends on their stability at different environmental conditions. The strain B4 which can produce biosurfactant at 25% NaCl showed good stability in alkaline pH and at a temperature range of 30°C-100°C. Due to the enormous utilization of biosurfactant in detergent manufacture the choice of alkaline biosurfactant is researched (Elazzazy et al., 2015). On the other hand, the interesting finding was the thermostability of the produced biosurfactant even after heat treatment (100°C for 30 min) which suggests the use of this biosurfactant in industries where heating is of a paramount importance (Khopade et al., 2012). To date, more attention has been focused on biosurfactant producing bacteria under extreme conditions for industrial and commercial usefulness. In fact, the biosurfactant produce by strain B4 have promising usefulness in pharmaceutical, cosmetics and food industries and for bioremediation in marine environment and Microbial enhanced oil recovery (MEOR) where the salinity, temperature and pH are high.CONCLUSIONThis is the first study on the culturable halophilic bacteria community inhabiting Chott Tinsilt in Eastern Algeria. Different genera of halotolerant bacteria with different phylogeneticaly characteristics have been isolated from this Chott. Culturing of bacteria and their molecular analysis provides an opportunity to have a wide range of cultured microorganisms from extreme habitats like hypersaline environments. Enzymes produced by halophilic bacteria show interesting properties like their ability to remain functional in extreme conditions, such as high temperatures, wide range of pH, and high salt concentrations. These enzymes have great economical potential in industrial, agricultural, chemical, pharmaceutical, and biotechnological applications. Thus, the halophiles isolated from Chott Tinsilt offer an important potential for application in microbial and enzyme biotechnology. In addition, these halo bacterial biosurfactants producers isolated from this Chott will help to develop more valuable eco-friendly products to the pharmacological and food industries and will be usefulness for bioremediation in marine environment and petroleum industry.ACKNOWLEDGMENTSOur thanks to Professor Abdelhamid Zoubir for proofreading the English composition of the present paper.CONFLICT OF INTERESTThe authors declare that they have no conflict of interest.Akbari, S., N. H. Abdurahman, R. M. Yunus, F. Fayaz and O. R. Alara, 2018. Biosurfactants—a new frontier for social and environmental safety: A mini review. Biotechnology research innovation, 2(1): 81-90.Association, A. P. H., A. W. W. Association, W. P. C. Federation and W. E. Federation, 1920. Standard methods for the examination of water and wastewater. American Public Health Association.Baati, H., R. Amdouni, N. Gharsallah, A. Sghir and E. Ammar, 2010. Isolation and characterization of moderately halophilic bacteria from tunisian solar saltern. Current microbiology, 60(3): 157-161.Berridge, N., 1952. Some observations on the determination of the activity of rennet. Analyst, 77(911): 57b-62.DasSarma, S. and P. Arora, 2001. Halophiles. Encyclopedia of life sciences. Nature publishishing group: 1-9.Donio, M. B. S., F. A. Ronica, V. T. Viji, S. Velmurugan, J. S. C. A. Jenifer, M. Michaelbabu, P. Dhar and T. Citarasu, 2013. Halomonas sp. Bs4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus, 2(1): 149.El-Sersy, N. A., 2012. Plackett-burman design to optimize biosurfactant production by marine Bacillus subtilis n10. Roman biotechnol lett, 17(2): 7049-7064.Elazzazy, A. M., T. Abdelmoneim and O. Almaghrabi, 2015. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi journal of biological Sciences, 22(4): 466-475.Graham, J. E. and B. Wilkinson, 1992. Staphylococcus aureus osmoregulation: Roles for choline, glycine betaine, proline, and taurine. Journal of bacteriology, 174(8): 2711-2716.Gupta, S., P. Sharma, K. Dev and A. Sourirajan, 2016. Halophilic bacteria of lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochemistry research international, 1: 1-10.Gupta, S., P. Sharma, K. Dev, M. Srivastava and A. Sourirajan, 2015. A diverse group of halophilic bacteria exist in lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus 4(1): 274.Hacěne, H., F. Rafa, N. Chebhouni, S. Boutaiba, T. Bhatnagar, J. C. Baratti and B. Ollivier, 2004. Biodiversity of prokaryotic microflora in el golea salt lake, Algerian Sahara. Journal of arid environments, 58(3): 273-284.Jeffries, C. D., D. F. Holtman and D. G. Guse, 1957. Rapid method for determining the activity of microorgan-isms on nucleic acids. Journal of bacteriology, 73(4): 590.Karan, R. and S. Khare, 2010. Purification and characterization of a solvent‐stable protease from Geomicrobium sp. Emb2. Environmental technology, 31(10): 1061-1072.Khopade, A., R. Biao, X. Liu, K. Mahadik, L. Zhang and C. Kokare, 2012. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 3: 198-204.Kim, K. K., J.-S. Lee and D. A. Stevens, 2013. Microbiology and epidemiology of Halomonas species. Future microbiology, 8(12): 1559-1573.Lane, D., 1991. 16s/23s rRNA sequencing in nucleic acid techniques in bacterial systematics. Stackebrandt e., editor;, and goodfellow m., editor. Chichester, UK: John Wiley & Sons.Morikawa, K., R. L. Ohniwa, T. Ohta, Y. Tanaka, K. Takeyasu and T. Msadek, 2009. Adaptation beyond the stress response: Cell structure dynamics and population heterogeneity in Staphylococcus aureus. Microbes environments, 25: 75-82.Morikawa, M., Y. Hirata and T. J. B. e. B. A.-M. Imanaka, 2000. A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et biophysica acta, 1488(3): 211-218.Oren, A., 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of industrial microbiology biotechnology, 28(1): 56-63.Oren, A., 2006. Halophilic microorganisms and their environments. Springer science & business media.Oren, A., R. Vreeland and L. Hochstein, 1993. Ecology of extremely halophilic microorganisms. The biology of halophilic bacteria, 2(1): 1-8.Phillips, K., F. Zaidan, O. R. Elizondo and K. L. Lowe, 2012. Phenotypic characterization and 16s rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, la sal del rey, in extreme south texas (USA). Aquatic biosystems, 8(1): 1-5.Post, F. and N. Collins, 1982. A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive 1. Journal of food biochemistry, 6(1): 25-38.Rocha, C., F. San-Blas, G. San-Blas and L. Vierma, 1992. Biosurfactant production by two isolates of Pseudomonas aeruginosa. World Journal of microbiology biotechnology, 8(2): 125-128.Rohban, R., M. A. Amoozegar and A. Ventosa, 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from howz soltan lake, Iran. Journal of industrial microbiology biotechnology, 36(3): 333-340.Roohi, A., I. Ahmed, N. Khalid, M. Iqbal and M. Jamil, 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. International journal of agricultural and biology, 16: 564-570.Sambrook, J., E. F. Fritsch and T. Maniatis, 1989. Molecular cloning: A laboratory manual, 2nd edn. Cold spring harbor laboratory, cold spring harbor, New York.Sánchez‐Porro, C., S. Martin, E. Mellado and A. Ventosa, 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of applied microbiology, 94(2): 295-300.Sarafin, Y., M. B. S. Donio, S. Velmurugan, M. Michaelbabu and T. Citarasu, 2014. Kocuria marina bs-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi journal of biological sciences, 21(6): 511-519.Smibert, R., 1994. Phenotypic characterization. In methods for general and molecular bacteriology. American society for microbiology: 611-651.Solomon, E. and K. J. I. Viswalingam, 2013. Isolation, characterization of halotolerant bacteria and its biotechnological potentials. International journal scientific research paper publication sites, 4: 1-7.Spring, S., W. Ludwig, M. Marquez, A. Ventosa and K.-H. Schleifer, 1996. Halobacillus gen. Nov., with descriptions of Halobacillus litoralis sp. Nov. and Halobacillus trueperi sp. Nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. Nov. International journal of systematic evolutionary microbiology, 46(2): 492-496.Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology evolution, 28(10): 2731-2739.Yakimov, M. M., K. N. Timmis, V. Wray and H. L. Fredrickson, 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis bas50. Applied and environmental microbiology, 61(5): 1706-1713.Yarza, P., P. Yilmaz, E. Pruesse, F. O. Glöckner, W. Ludwig, K.-H. Schleifer, W. B. Whitman, J. Euzéby, R. Amann and R. Rosselló-Móra, 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16s rRNA gene sequences. Nature reviews microbiology, 12(9): 635-645
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Provant, Zachary, Evan Elderbrock, Andrea Willingham, Mark Carey, Alessandro Antonello, Carlos Moffat, Dave Sutherland e Sakina Shahid. "Reframing Antarctica’s ice loss: impacts of cryospheric change on local human activity". Polar Record 57 (2021). http://dx.doi.org/10.1017/s0032247421000024.

Texto completo da fonte
Resumo:
Abstract Physical scientists, social scientists, humanities scholars, and journalists have all framed Antarctica as a place of global importance—as a laboratory for scientific research, as a strategic site for geopolitical agendas, and more recently as a source of melting ice that could catastrophically inundate populations worldwide. Yet, the changing cryosphere impacts society within Antarctica as well, and this article expands the focus of Antarctic ice research to include human activities on and around the continent. It reframes Antarctica as a place with human history and local activities that are being affected by melting ice, even if the consequences are much smaller in scale than the effects of global sea level rise. Specifically focused on tourism and conservation along the west Antarctica Peninsula (wAP), this article demonstrates the impacts of changing glaciers and sea ice on the timing, location, and type of tourism as well as the ability of changing ice to mediate human experiences through conservation agendas. As future ice conditions influence Antarctic tourism and conservation, an attention to issues emerging within the wAP region offers a new perspective on climate change impacts and the management of Antarctic activities in the 21st-century Anthropocene.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Collis, Christy. "Australia’s Antarctic Turf". M/C Journal 7, n.º 2 (1 de março de 2004). http://dx.doi.org/10.5204/mcj.2330.

Texto completo da fonte
Resumo:
It is January 1930 and the restless Southern Ocean is heaving itself up against the frozen coast of Eastern Antarctica. For hundreds of kilometres, this coastline consists entirely of ice: although Antarctica is a continent, only 2% of its surface consists of exposed rock; the rest is buried under a vast frozen mantle. But there is rock in this coastal scene: silhouetted against the glaring white of the glacial shelf, a barren island humps up out of the water. Slowly and cautiously, the Discovery approaches the island through uncharted waters; the crew’s eyes strain in the frigid air as they scour the ocean’s surface for ship-puncturing bergs. The approach to the island is difficult, but Captain Davis maintains the Discovery on its course as the wind howls in the rigging. Finally, the ship can go no further; the men lower a boat into the tossing sea. They pull hard at the oars until the boat is abreast of the island, and then they ram the bow against its icy littoral. Now one of the key moments of this exploratory expedition—officially titled the British, Australian, and New Zealand Antarctic Research Expedition (BANZARE)—is about to occur: the expedition is about to succeed in its primary spatial mission. Douglas Mawson, the Australian leader of the expedition, puts his feet onto the island and ascends to its bleak summit. There, he and his crew assemble a mound of loose stones and insert into it the flagpole they’ve carried with them across the ocean. Mawson reads an official proclamation of territorial annexation (see Bush 118-19), the photographer Frank Hurley shoots the moment on film, and one of the men hauls the Union Jack up the pole. Until the Australian Flags Act of 1953, the Union Jack retained seniority over the Australian flag. BANZARE took place before the 1931 Statute of Westminster, which gave full political and foreign policy independence to Commonwealth countries, thus Mawson claimed Antarctic space on behalf of Britain. He did so with the understanding that Britain would subsequently grant Australia title to its own Antarctican space. Britain did so in 1933. In the freezing wind, the men take off their hats, give three cheers for the King, and sing “God Save the King.” They deposit a copy of the proclamation into a metal canister and affix this to the flagpole; for a moment they admire the view. But there is little time to savour the moment, or the feeling of solid ground under their cold feet: the ship is waiting and the wind is growing in force. The men row back to the Discovery; Mawson returns to his cabin and writes up the event. A crucial moment in Antarctica’s spatial history has occurred: on what Mawson has aptly named Proclamation Island, Antarctica has been produced as Australian space. But how, exactly, does this production of Antarctica as a spatial possession work? How does this moment initiate the transformation of six million square kilometres of Antarctica—42% of the continent—into Australian space? The answer to this question lies in three separate, but articulated cultural technologies: representation, the body of the explorer, and international territorial law. When it comes to thinking about ‘turf’, Antarctica may at first seem an odd subject of analysis. Physically, Antarctica is a turfless space, an entire continent devoid of grass, plants, land-based animals, or trees. Geopolitically, Antarctica remains the only continent on which no turf wars have been fought: British and Argentinian soldiers clashed over the occupation of a Peninsular base in the Hope Bay incident of 1952 (Dodds 56), but beyond this somewhat bathetic skirmish, Antarctican space has never been the object of physical conflict. Further, as Antarctica has no indigenous human population, its space remains free of the colonial turfs of dispossession, invasion, and loss. The Antarctic Treaty of 1961 formalised Antarctica’s geopolitically turfless status, stipulating that the continent was to be used for peaceful purposes only, and stating that Antarctica was an internationally shared space of harmony and scientific goodwill. So why address Antarctican spatiality here? Two motivations underpin this article’s anatomising of Australia’s Antarctican space. First, too often Antarctica is imagined as an entirely homogeneous space: a vast white plain dotted here and there along its shifting coast by identical scientific research stations inhabited by identical bearded men. Similarly, the complexities of Antarctica’s geopolitical and legal spaces are often overlooked in favour of a vision of the continent as a site of harmonious uniformity. While it is true that the bulk of Antarctican space is ice, the assumption that its cultural spatialities are identical is far from the case: this article is part of a larger endeavour to provide a ‘thick’ description of Antarctican spatialities, one which points to the heterogeneity of cultural geographies of the polar south. The Australian polar spatiality installed by Mawson differs radically from that of, for example, Chile; in a continent governed by international consensus, it is crucial that the specific cultural geographies and spatial histories of Treaty participants be clearly understood. Second, attending to complexities of Antarctican spatiality points up the intersecting cultural technologies involved in spatial production, cultural technologies so powerful that, in the case of Antarctica, they transformed nearly half of a distant continent into Australian sovereign space. This article focuses its critical attention on three core spatialising technologies, a trinary that echoes Henri Lefebvre’s influential tripartite model of spatiality: this article attends to Australian Antarctic representation, practise, and the law. At the turn of the twentieth century, Scott, Shackleton, and Amundsen trooped over the polar plateau, and Antarctic space became a setting for symbolic Edwardian performances of heroic imperial masculinity and ‘frontier’ hardiness. At the same time, a second, less symbolic, type of Antarctican spatiality began to evolve: for the first time, Antarctica became a potential territorial possession; it became the object of expansionist geopolitics. Based in part on Scott’s expeditions, Britain declared sovereignty over an undefined area of the continent in 1908, and France declared Antarctic space its own in 1924; by the late 1920s, what John Agnew and Stuart Corbridge refer to as the nation-state ontology—that is, the belief that land should and must be divided into state-owned units—had arrived in Antarctica. What the Adelaide Advertiser’s 8 April 1929 headline referred to as “A Scramble for Antarctica” had begun. The British Imperial Conference of 1926 concluded that the entire continent should become a possession of Britain and its dominions, New Zealand and Australia (Imperial). Thus, in 1929, BANZARE set sail into the brutal Southern Ocean. Although the expedition included various scientists, its primary mission was not to observe Antarctican space, but to take possession of it: as the expedition’s instructions from Australian Prime Minister Bruce stated, BANZARE’s mission was to produce Antarctica as Empire’s—and by extension, Australia’s—sovereign space (Jacka and Jacka 251). With the moment described in the first paragraph of this article, along with four other such moments, BANZARE succeeded; just how it did so is the focus of this work. It is by now axiomatic in spatial studies that the job of imperial explorers is not to locate landforms, but to produce a discursive space. “The early travellers,” as Paul Carter notes of Australian explorers, “invented places rather than found them” (51). Numerous analytical investigations attend to the discursive power of exploration: in Australia, Carter’s Road to Botany Bay, Simon Ryan’s Cartographic Eye, Ross Gibson’s Diminishing Paradise, and Brigid Hains’s The Ice and the Inland, to name a few, lay bare the textual strategies through which the imperial annexation of “new” spaces was legitimated and enabled. Discursive territoriality was certainly a core product of BANZARE: as this article’s opening paragraph demonstrates, one of the key missions of BANZARE was not simply to perform rituals of spatial possession, but to textualise them for popular and governmental consumption. Within ten months of the expedition’s return, Hurley’s film Southward Ho! With Mawson was touring Australia. BANZARE consisted of two separate trips to Antarctica; Southward Ho! documents the first of these, while Siege of the South documents the both the first and the second, 1930-1, mission. While there is not space here to provide a detailed textual analysis of the entire film, a focus on the “Proclamation Island moment” usefully points up some of the film’s central spatialising work. Hurley situated the Proclamation Island scene at the heart of the film; the scene was so important that Hurley wished he had been able to shoot two hours of footage of Mawson’s island performance (Ayres 194). This scene in the film opens with a long shot of the land and sea around the island; a soundtrack of howling wind not only documents the brutal conditions in which the expedition worked, but also emphasises the emptiness of Antarctican space prior to its “discovery” by Mawson: in this shot, the film visually confirms Antarctica’s status as an available terra nullius awaiting cooption into Australian understanding, and into Australian national space. The film then cuts to a close-up of Mawson raising the flag; the sound of the wind disappears as Mawson begins to read the proclamation of possession. It is as if Mawson’s proclamation of possession stills the protean chaos of unclaimed Antarctic space by inviting it into the spatial order of national territory: at this moment, Antarctica’s agency is symbolically subsumed by Mawson’s acquisitive words. As the scene ends, the camera once again pans over the surrounding sea and ice scape, visually confirming the impact of Mawson’s—and the film’s—performance: all this, the shot implies, is now made meaningful; all this is now understood, recorded, and, most importantly, all this is now ours. A textual analysis of this filmic moment might identify numerous other spatialising strategies at work: its conflation of Mawson’s and the viewer’s proprietary gazes (Ryan), its invocation of the sublime, or its legitimising conflation of the ‘purity’ of the whiteness of the landscape with the whiteness of its claimants (Dyer 21). However, the spatial productivity of this moment far exceeds the discursive. What is at times frustrating about discourse analyses of spatiality is that they too often fail to articulate representation to other, equally potent, cultural technologies of spatial production. John Wylie notes that “on the whole, accounts of early twentieth-century Antarctic exploration exhibit a particular tendency to position and interpret exploratory experience in terms of self-contained discursive ensembles” (170). Despite the undisputed power of textuality, discourse alone does not, and cannot, produce a spatial possession. “Discursive and representational practices,” as Jane Jacobs observes, “are in a mutually constitutive relationship with political and economic forces” (9); spatiality, in other words, is not simply a matter of texts. In order to understand fully the process of Antarctican spatial acquisition, it is necessary to depart from tales of exploration and ships and flags, and to focus on the less visceral spatiality of international territorial law. Or, more accurately, it is necessary to address the mutual imbrication of these two articulated spatialising “domains of practice” (Dixon). The emerging field of critical legal geography is founded on the premise that legal analyses of territoriality neglect the spatial dimension of their investigations; rather than seeing the law as a means of spatial production, they position space as a neutral, universally-legible entity which is neatly governed by the “external variable” of territorial law (Blomley 28). “In the hegemonic conception of the law,” Wesley Pue argues, “the entire world is transmuted into one vast isotropic surface” (568) upon which law acts. Nicholas Blomley asserts, however, that law is not a neutral organiser of space, but rather a cultural technology of spatial production. Territorial laws, in other words, make spaces, and don’t simply govern them. When Mawson planted the flag and read the proclamation, he was producing Antarctica as a legal space as well as a discursive one. Today’s international territorial laws derive directly from European imperialism: as European empires expanded, they required a spatial system that would protect their newly-annexed lands, and thus they developed a set of laws of territorial acquisition and possession. Undergirding these laws is the ontological premise that space is divisible into state-owned sovereign units. At international law, space can be acquired by its imperial claimants in one of three main ways: through conquest, cession (treaty), or through “the discovery of terra nullius” (see Triggs 2). Antarctica and Australia remain the globe’s only significant spaces to be transformed into possessions through the last of these methods. In the spatiality of the international law of discovery, explorers are not just government employees or symbolic representatives, but vessels of enormous legal force. According to international territorial law, sovereign title to “new” territory—land defined (by Europeans) as terra nullius, or land belonging to no one—can be established through the eyes, feet, codified ritual performances, and documents of explorers. That is, once an authorised explorer—Mawson carried documents from both the Australian Prime Minister and the British King that invested his body and his texts with the power to transform land into a possession—saw land, put his foot on it, planted a flag, read a proclamation, then documented these acts in words and maps, that land became a possession. These performative rituals and their documentation activate the legal spatiality of territorial acquisition; law here is revealed as a “bundle of practices” that produce space as a possession (Ford 202). What we witness when we attend to Mawson’s island performance, then, is not merely a discursive performance, but also the transformation of Antarctica into a legal space of possession. Similarly, the films and documents generated by the expedition are more than just a “sign system of human ambition” (Tang 190), they are evidence, valid at law, of territorial possession. They are key components of Australia’s legal currency of Antarctican spatial purchase. What is of central importance here is that Mawson’s BANZARE performance on Proclamation Island is a moment in which the dryly legal, the bluntly physical, and the densely textual clearly intersect in the creation of space as a possession. Australia did not take possession of forty-two percent of Antarctica after BANZARE by law, by exploration, or by representation alone. The Australian government built its Antarctic space with letters patent and legal documents. BANZARE produced Australia’s Antarctic possession through the physical and legal rituals of flag-planting, proclamation-reading, and exploration. BANZARE further contributed to Australia’s polar empire with maps, journals, photos and films, and cadastral lists of the region’s animals, minerals, magnetic fields, and winds. The law of “discovery of terra nullius” coalesced these spaces into a territory officially designated as Australian. It is crucial to recognise that the production of nearly half of Antarctica as Australian space was, and is not a matter of discourse, of physical performance, or of law alone. Rather, these three cultural technologies of spatial production are mutually imbricated; none can function without the others, nor is one reducible to an epiphenomenon of another. To focus on the discursive products of BANZARE without attending to the expedition’s legal work not only downplays the significance of Mawson’s spatialising achievement, but also blinds us to the role that law plays in the production of space. Attending to Mawson’s Proclamation Island moment points to the unique nature of Australia’s Antarctic spatiality: unlike the US, which constructs Antarctic spatiality as entirely non-sovereign; and unlike Chile, which bases its Antarctic sovereignty claim on Papal Bulls and acts of domestic colonisation, Australian Antarctic space is a spatiality of possession, founded on a bedrock of imperial exploration, representation, and law. Seventy-four years ago, the camera whirred as a man stuck a flagpole into the bleak summit rocks of a small Antarctic island: six million square kilometres of Antarctica became, and remain, Australian space. Works Cited Agnew, John, and Stuart Corbridge. Mastering Space: Hegemony, Territory and International Political Economy. London: Routledge, 1995. Ayres, Philip. Mawson: A Life. Melbourne: Melbourne UP, 1999. Blomley, Nicholas. Law, Space, and the Geographies of Power. New York: Guilford, 1994. Bush, W. M. Antarctica and International Law: A Collection of Inter-State and National Documents. Vol. 2. London: Oceana, 1982. Carter, Paul. The Road to Botany Bay: An Essay in Spatial History. London: Faber, 1987. Dixon, Rob. Prosthetic Gods: Travel, Representation and Colonial Governance. Brisbane: UQP, 2001. Dodds, Klaus. Geopolitics in Antarctica: Views from the Southern Oceanic Rim. Chichester: Wiley, 1997. Dyer, Richard. White. London: Routledge, 1997. Ford, Richard. “Law’s Territory (A History of Jurisdiction).” The Legal Geographies Reader. Ed. Nicholas Blomley and Richard Ford. Oxford: Blackwell, 2001. 200-17. Gibson, Ross. The Diminishing Paradise: Changing Literary Perceptions of Australia. Sydney: Sirius, 1984. Hains, Brigid. The Ice and the Inland: Mawson, Flynn, and the Myth of the Frontier. Melbourne: Melbourne UP, 2002. Imperial Conference, 1926. Summary of Proceedings. London: His Majesty’s Stationary Office, 1926. Jacka, Fred, and Eleanor Jacka, eds. Mawson’s Antarctic Diaries. Sydney: Allen & Unwin, 1988. Jacobs, Jane. Edge of Empire: Postcolonialism and the City. London: Routledge, 1996. Pue, Wesley. “Wrestling with Law: (Geographical) Specificity versus (Legal) Abstraction.” Urban Geography 11.6 (1990): 566-85. Ryan, Simon. The Cartographic Eye: How the Explorers Saw Australia. Cambridge: Cambridge UP, 1996. Tang, David. “Writing on Antarctica.” Room 5 1 (2000): 185-95. Triggs, Gillian. International Law and Australian Sovereignty in Antarctica. Sydney: Legal, 1986. Wylie, John. “Earthly Poles: The Antarctic Voyages of Scott and Amundsen.” Postcolonial Geographies. Ed Alison Blunt and Cheryl McEwan. London: Continuum, 2002. 169-83. Citation reference for this article MLA Style Collis, Christy. "Australia’s Antarctic Turf" M/C: A Journal of Media and Culture <http://www.media-culture.org.au/0403/02-feature-australia.php>. APA Style Collis, C. (2004, Mar17). Australia’s Antarctic Turf. M/C: A Journal of Media and Culture,7,<http://www.media-culture.org.au/0403/02-feature australia.php>
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Gupta, Ratish C., e Shatakshi Dubey. "Does Online Travel Applications Influence Consumer Decisions – A Literature Review using Bibliometric tools". SMS Journal of Enterpreneurship & Innovation 7, n.º 01 (25 de julho de 2021). http://dx.doi.org/10.21844/smsjei.v7i01.28729.

Texto completo da fonte
Resumo:
Travelling and tourism plays an important medication for the relaxation of the people taking time out of their busy and hectic schedules by staying in places away from their standard conditions for a brief timeframe only for refreshment. Tourism has an imperative impact in the commitment towards advancement, foreign exchange and enhancement of employability for progression of community. The share of tourism to the world economy is 9% of GDP. The most basic estimation of tourism can be said as the social exchange among various nationalities that visit the country and varied tie-ups that may clear course for overall peace and harmony. As, travelling and tourism has turned into the most mainstream, trendy and real wellspring of income in India. Tourism has given a vast purview of freedom to travellers and explorers to broaden the market and it act as significant aspect for travellers while deciding among various mode of travels and factors affecting them. This Paper is about growing online travel Application (OTAs) where researchers have studied number of academic articles and research papers on their possible impact on purchase decision of consumers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Barnett, Tully, Simon Dwyer, Rachel Franks e Jane Mummery. "Regional". M/C Journal 22, n.º 3 (19 de junho de 2019). http://dx.doi.org/10.5204/mcj.1548.

Texto completo da fonte
Resumo:
The experiences of regional Australia are unique. This issue of M/C Journal solidifies some of the understandings of the experiences of living, working, creating, researching or thinking in, or through, regional Australia. Our work explores regional cultural constructions of these places, spaces, and identities, as well as of the communities that breathe life into these landscapes, whilst also bringing into question relations between the regional, the local, and the global. The contributions to this issue have all worked to investigate sites of collaboration and innovation, to tell stories about diverse communities, and cultural centres in addition to sites of hardship, innovation, and resilience.Moreover, regional Australia has often been marginalised and routinely activated as a symbol of what it means to live in the Great South Land, thus these places are often situated in the shadows of major metropolitan areas. This issue seeks to be a small redress of such acts of marginalisation and activation. Indeed, one of the central purposes of this collection of articles is to privilege regional voices. To this end, the editors have maintained the authorial voices within each piece. Revealed here is a diversity of point of view, of writing styles, and, most importantly, a diversity of scholarly approaches to what we know (and what we might come to know) of ‘regional’ in Australia. The feature article, from Karen Hall and Patrick Sutczak, takes up ideas of regional Australia through an examination of three site-based creative arts projects in the Tasmanian Midlands, arguing for an understanding of regionality as an accretion of environmental and cultural histories. Steven Pace has written on how a high-bandwidth data network project identified a special challenge for the Mackay region which had traditionally prospered from industries such as coal, sugar, and tourism; two decades later, how does the reality compare with the original vision? Alison Sheridan, Jane O’Sullivan, Josie Fisher, Kerry Dunne, and Wendy Beck have argued, looking at television media, that there is greater cultural diversity and complexity in regional towns and cities than portrayed in popular programming that often focus on landscapes and resilient communities, or on the lifestyle benefits of living in a regional area. Damien Webb and Rachel Franks have explored the institutional collecting of stories vital to the culture and knowledge of Aboriginal Australians and how such stories, generated by colonists, can be shared—across metropolitan and regional locations—with Indigenous communities through meaningful collaboration. Robin Ryan, with Uncle Ossie Cruse, has discussed Koori culture in New South Wales and the value of bringing together emerging regional artists, national headline performers of music, dance, and poetry, complemented by art, craft, culinary, language, and performing arts demonstrations. Terry Eyssens has also looked carefully at Indigenous issues and argues that the Australian colonial project has been to convert the entire continent into a region of Europe, in the process he has challenged readers to see the spaces they inhabit in a new way.In highlighting a collaboration between the Bonegilla Migrant Experience site, the Albury LibraryMuseum, and Charles Sturt University, Jessie Lymn has considered the role of regional libraries and museums in collecting, preserving, and making accessible the history of migrant communities. Alison Wishart has also looked at the cultural sector through the lens of the important issue of training and ways to connect the staff and volunteers of galleries, libraries, archives, and museums in regional areas to low-cost professional development and networking opportunities. Ellen Forsyth has investigated how local studies collections in public libraries can help people navigate the various experiences of regional Australia, paying particular attention to how this discovery work can be done onsite and online.Patrick West has examined how the concept of the regional is tied to ideas of well-being through the lens of domestic violence in Tony Birch’s short story “The Red House”. Creativity is central to Susie Elliott’s article which draws on her work on the social, economic, and local conditions that can support art practices, this research highlights alternative ways to live well while entering into the shared space of cultural production. We bookend this issue with another piece of scholarship from Tasmania. The notion of regional has been expanded here by Hanne Nielsen, Chloe Lucas, and Elizabeth Leane with their investigation into Antarctica and how this polar cap has been conceptualised as a region and what that might mean for people in this southern-most state of Australia. AcknowledgementsOur sincere thanks to the members of the Advisory Board of the Australasian Consortium of Humanities Research Centres (ACHRC) for encouraging us in this project. The ACHRC supports two Member Initiatives: Humanities in the Regions; and Humanities in Cultural Institutions. The Humanities in the Regions Member Initiative, established in 2014, seeks to promote Humanities-based research in regional areas across Australia. We thank our enthusiastic contributors, those who gave their expertise and time in the blind peer review process, and Axel Bruns.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Nielsen, Hanne E. F., Chloe Lucas e Elizabeth Leane. "Rethinking Tasmania’s Regionality from an Antarctic Perspective: Flipping the Map". M/C Journal 22, n.º 3 (19 de junho de 2019). http://dx.doi.org/10.5204/mcj.1528.

Texto completo da fonte
Resumo:
IntroductionTasmania hangs from the map of Australia like a drop in freefall from the substance of the mainland. Often the whole state is mislaid from Australian maps and logos (Reddit). Tasmania has, at least since federation, been considered peripheral—a region seen as isolated, a ‘problem’ economically, politically, and culturally. However, Tasmania not only cleaves to the ‘north island’ of Australia but is also subject to the gravitational pull of an even greater land mass—Antarctica. In this article, we upturn the political conventions of map-making that place both Antarctica and Tasmania in obscure positions at the base of the globe. We show how a changing global climate re-frames Antarctica and the Southern Ocean as key drivers of worldwide environmental shifts. The liquid and solid water between Tasmania and Antarctica is revealed not as a homogenous barrier, but as a dynamic and relational medium linking the Tasmanian archipelago with Antarctica. When Antarctica becomes the focus, the script is flipped: Tasmania is no longer on the edge, but core to a network of gateways into the southern land. The state’s capital of Hobart can from this perspective be understood as an “Antarctic city”, central to the geopolitics, economy, and culture of the frozen continent (Salazar et al.). Viewed from the south, we argue, Tasmania is not a problem, but an opportunity for a form of ecological, cultural, economic, and political sustainability that opens up the southern continent to science, discovery, and imagination.A Centre at the End of the Earth? Tasmania as ParadoxThe islands of Tasmania owe their existence to climate change: a period of warming at the end of the last ice age melted the vast sheets of ice covering the polar regions, causing sea levels to rise by more than one hundred metres (Tasmanian Climate Change Office 8). Eleven thousand years ago, Aboriginal people would have witnessed the rise of what is now called Bass Strait, turning what had been a peninsula into an archipelago, with the large island of Tasmania at its heart. The heterogeneous practices and narratives of Tasmanian regional identity have been shaped by the geography of these islands, and their connection to the Southern Ocean and Antarctica. Regions, understood as “centres of collective consciousness and sociospatial identities” (Paasi 241) are constantly reproduced and reimagined through place-based social practices and communications over time. As we will show, diverse and contradictory narratives of Tasmanian regionality often co-exist, interacting in complex and sometimes complementary ways. Ecocritical literary scholar C.A. Cranston considers duality to be embedded in the textual construction of Tasmania, writing “it was hell, it was heaven, it was penal, it was paradise” (29). Tasmania is multiply polarised: it is both isolated and connected; close and far away; rich in resources and poor in capital; the socially conservative birthplace of radical green politics (Hay 60). The weather, as if sensing the fine balance of these paradoxes, blows hot and cold at a moment’s notice.Tasmania has wielded extraordinary political influence at times in its history—notably during the settlement of Melbourne in 1835 (Boyce), and during protests against damming the Franklin River in the early 1980s (Mercer). However, twentieth-century historical and political narratives of Tasmania portray the Bass Strait as a barrier, isolating Tasmanians from the mainland (Harwood 61). Sir Bede Callaghan, who headed one of a long line of federal government inquiries into “the Tasmanian problem” (Harwood 106), was clear that Tasmania was a victim of its own geography:the major disability facing the people of Tasmania (although some residents may consider it an advantage) is that Tasmania is an island. Separation from the mainland adversely affects the economy of the State and the general welfare of the people in many ways. (Callaghan 3)This perspective may stem from the fact that Tasmania has maintained the lowest Gross Domestic Product per capita of all states since federation (Bureau of Infrastructure Transport and Regional Economics 9). Socially, economically, and culturally, Tasmania consistently ranks among the worst regions of Australia. Statistical comparisons with other parts of Australia reveal the population’s high unemployment, low wages, poor educational outcomes, and bad health (West 31). The state’s remoteness and isolation from the mainland states and its reliance on federal income have contributed to the whole of Tasmania, including Hobart, being classified as ‘regional’ by the Australian government, in an attempt to promote immigration and economic growth (Department of Infrastructure and Regional Development 1). Tasmania is indeed both regional and remote. However, in this article we argue that, while regionality may be cast as a disadvantage, the island’s remote location is also an asset, particularly when viewed from a far southern perspective (Image 1).Image 1: Antarctica (Orthographic Projection). Image Credit: Wikimedia Commons, Modified Shading of Tasmania and Addition of Captions by H. Nielsen.Connecting Oceans/Collapsing DistanceTasmania and Antarctica have been closely linked in the past—the future archipelago formed a land bridge between Antarctica and northern land masses until the opening of the Tasman Seaway some 32 million years ago (Barker et al.). The far south was tangible to the Indigenous people of the island in the weather blowing in from the Southern Ocean, while the southern lights, or “nuyina”, formed a visible connection (Australia’s new icebreaker vessel is named RSV Nuyina in recognition of these links). In the contemporary Australian imagination, Tasmania tends to be defined by its marine boundaries, the sea around the islands represented as flat, empty space against which to highlight the topography of its landscape and the isolation of its position (Davies et al.). A more relational geographic perspective illuminates the “power of cross-currents and connections” (Stratford et al. 273) across these seascapes. The sea country of Tasmania is multiple and heterogeneous: the rough, shallow waters of the island-scattered Bass Strait flow into the Tasman Sea, where the continental shelf descends toward an abyssal plain studded with volcanic seamounts. To the south, the Southern Ocean provides nutrient-rich upwellings that attract fish and cetacean populations. Tasmania’s coast is a dynamic, liminal space, moving and changing in response to the global currents that are driven by the shifting, calving and melting ice shelves and sheets in Antarctica.Oceans have long been a medium of connection between Tasmania and Antarctica. In the early colonial period, when the seas were the major thoroughfares of the world and inland travel was treacherous and slow, Tasmania’s connection with the Southern Ocean made it a valuable hub for exploration and exploitation of the south. Between 1642 and 1900, early European explorers were followed by British penal colonists, convicts, sealers, and whalers (Kriwoken and Williamson 93). Tasmania was well known to polar explorers, with expeditions led by Jules Dumont d’Urville, James Clark Ross, Roald Amundsen, and Douglas Mawson all transiting through the port of Hobart. Now that the city is no longer a whaling hub, growing populations of cetaceans continue to migrate past the islands on their annual journeys from the tropics, across the Sub-Antarctic Front and Antarctic circumpolar current, and into the south polar region, while southern species such as leopard seals are occasionally seen around Tasmania (Tasmania Parks and Wildlife). Although the water surrounding Tasmania and Antarctica is at times homogenised as a ‘barrier’, rendering these places isolated, the bodies of water that surround both are in fact permeable, and regularly crossed by both humans and marine species. The waters are diverse in their physical characteristics, underlying topography, sea life, and relationships, and serve to connect many different ocean regions, ecosystems, and weather patterns.Views from the Far SouthWhen considered in terms of its relative proximity to Antarctic, rather than its distance from Australia’s political and economic centres, Tasmania’s identity undergoes a significant shift. A sign at Cockle Creek, in the state’s far south, reminds visitors that they are closer to Antarctica than to Cairns, invoking a discourse of connectedness that collapses the standard ten-day ship voyage to Australia’s closest Antarctic station into a unit comparable with the routinely scheduled 5.5 hour flight to North Queensland. Hobart is the logistical hub for the Australian Antarctic Division and the French Institut Polaire Francais (IPEV), and has hosted Antarctic vessels belonging to the USA, South Korea, and Japan in recent years. From a far southern perspective, Hobart is not a regional Australian capital but a global polar hub. This alters the city’s geographic imaginary not only in a latitudinal sense—from “top down” to “bottom up”—but also a longitudinal one. Via its southward connection to Antarctica, Hobart is also connected east and west to four other recognized gateways: Cape Town in South Africa, Christchurch in New Zealand; Punta Arenas in Chile; and Ushuaia in Argentina (Image 2). The latter cities are considered small by international standards, but play an outsized role in relation to Antarctica.Image 2: H. Nielsen with a Sign Announcing Distances between Antarctic ‘Gateway’ Cities and Antarctica, Ushuaia, Argentina, 2018. Image Credit: Nicki D'Souza.These five cities form what might be called—to adapt geographer Klaus Dodds’ term—a ‘Southern Rim’ around the South Polar region (Dodds Geopolitics). They exist in ambiguous relationship to each other. Although the five cities signed a Statement of Intent in 2009 committing them to collaboration, they continue to compete vigorously for northern hemisphere traffic and the brand identity of the most prominent global gateway. A state government brochure spruiks Hobart, for example, as the “perfect Antarctic Gateway” emphasising its uniqueness and “natural advantages” in this regard (Tasmanian Government, 2016). In practice, the cities are automatically differentiated by their geographic position with respect to Antarctica. Although the ‘ice continent’ is often conceived as one entity, it too has regions, in both scientific and geographical senses (Terauds and Lee; Antonello). Hobart provides access to parts of East Antarctica, where the Australian, French, Japanese, and Chinese programs (among others) have bases; Cape Town is a useful access point for Europeans going to Dronning Maud Land; Christchurch is closest to the Ross Sea region, site of the largest US base; and Punta Arenas and Ushuaia neighbour the Antarctic Peninsula, home to numerous bases as well as a thriving tourist industry.The Antarctic sector is important to the Tasmanian economy, contributing $186 million (AUD) in 2017/18 (Wells; Gutwein; Tasmanian Polar Network). Unsurprisingly, Tasmania’s gateway brand has been actively promoted, with the 2016 Australian Antarctic Strategy and 20 Year Action Plan foregrounding the need to “Build Tasmania’s status as the premier East Antarctic Gateway for science and operations” and the state government releasing a “Tasmanian Antarctic Gateway Strategy” in 2017. The Chinese Antarctic program has been a particular focus: a Memorandum of Understanding focussed on Australia and China’s Antarctic relations includes a “commitment to utilise Australia, including Tasmania, as an Antarctic ‘gateway’.” (Australian Antarctic Division). These efforts towards a closer relationship with China have more recently come under attack as part of a questioning of China’s interests in the region (without, it should be noted, a concomitant questioning of Australia’s own considerable interests) (Baker 9). In these exchanges, a global power and a state of Australia generally classed as regional and peripheral are brought into direct contact via the even more remote Antarctic region. This connection was particularly visible when Chinese President Xi Jinping travelled to Hobart in 2014, in a visit described as both “strategic” and “incongruous” (Burden). There can be differences in how this relationship is narrated to domestic and international audiences, with issues of sovereignty and international cooperation variously foregrounded, laying the ground for what Dodds terms “awkward Antarctic nationalism” (1).Territory and ConnectionsThe awkwardness comes to a head in Tasmania, where domestic and international views of connections with the far south collide. Australia claims sovereignty over almost 6 million km2 of the Antarctic continent—a claim that in area is “roughly the size of mainland Australia minus Queensland” (Bergin). This geopolitical context elevates the importance of a regional part of Australia: the claims to Antarctic territory (which are recognised only by four other claimant nations) are performed not only in Antarctic localities, where they are made visible “with paraphernalia such as maps, flags, and plaques” (Salazar 55), but also in Tasmania, particularly in Hobart and surrounds. A replica of Mawson’s Huts in central Hobart makes Australia’s historic territorial interests in Antarctica visible an urban setting, foregrounding the figure of Douglas Mawson, the well-known Australian scientist and explorer who led the expeditions that proclaimed Australia’s sovereignty in the region of the continent roughly to its south (Leane et al.). Tasmania is caught in a balancing act, as it fosters international Antarctic connections (such hosting vessels from other national programs), while also playing a key role in administering what is domestically referred to as the Australian Antarctic Territory. The rhetoric of protection can offer common ground: island studies scholar Godfrey Baldacchino notes that as island narratives have moved “away from the perspective of the ‘explorer-discoverer-colonist’” they have been replaced by “the perspective of the ‘custodian-steward-environmentalist’” (49), but reminds readers that a colonising disposition still lurks beneath the surface. It must be remembered that terms such as “stewardship” and “leadership” can undertake sovereignty labour (Dodds “Awkward”), and that Tasmania’s Antarctic connections can be mobilised for a range of purposes. When Environment Minister Greg Hunt proclaimed at a press conference that: “Hobart is the gateway to the Antarctic for the future” (26 Apr. 2016), the remark had meaning within discourses of both sovereignty and economics. Tasmania’s capital was leveraged as a way to position Australia as a leader in the Antarctic arena.From ‘Gateway’ to ‘Antarctic City’While discussion of Antarctic ‘Gateway’ Cities often focuses on the economic and logistical benefit of their Antarctic connections, Hobart’s “gateway” identity, like those of its counterparts, stretches well beyond this, encompassing geological, climatic, historical, political, cultural and scientific links. Even the southerly wind, according to cartoonist Jon Kudelka, “has penguins in it” (Image 3). Hobart residents feel a high level of connection to Antarctica. In 2018, a survey of 300 randomly selected residents of Greater Hobart was conducted under the umbrella of the “Antarctic Cities” Australian Research Council Linkage Project led by Assoc. Prof. Juan Francisco Salazar (and involving all three present authors). Fourteen percent of respondents reported having been involved in an economic activity related to Antarctica, and 36% had attended a cultural event about Antarctica. Connections between the southern continent and Hobart were recognised as important: 71.9% agreed that “people in my city can influence the cultural meanings that shape our relationship to Antarctica”, while 90% agreed or strongly agreed that Hobart should play a significant role as a custodian of Antarctica’s future, and 88.4% agreed or strongly agreed that: “How we treat Antarctica is a test of our approach to ecological sustainability.” Image 3: “The Southerly” Demonstrates How Weather Connects Hobart and Antarctica. Image Credit: Jon Kudelka, Reproduced with Permission.Hobart, like the other gateways, activates these connections in its conscious place-branding. The city is particularly strong as a centre of Antarctic research: signs at the cruise-ship terminal on the waterfront claim that “There are more Antarctic scientists based in Hobart […] than at any other one place on earth, making Hobart a globally significant contributor to our understanding of Antarctica and the Southern Ocean.” Researchers are based at the Institute for Marine and Antarctic Studies (IMAS), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), and the Australian Antarctic Division (AAD), with several working between institutions. Many Antarctic researchers located elsewhere in the world also have a connection with the place through affiliations and collaborations, leading journalist Jo Chandler to assert that “the breadth and depth of Hobart’s knowledge of ice, water, and the life forms they nurture […] is arguably unrivalled anywhere in the world” (86).Hobart also plays a significant role in Antarctica’s governance, as the site of the secretariats for the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the Agreement on the Conservation of Albatrosses and Petrels (ACAP), and as host of the Antarctic Consultative Treaty Meetings on more than one occasion (1986, 2012). The cultural domain is active, with Tasmanian Museum and Art Gallery (TMAG) featuring a permanent exhibit, “Islands to Ice”, emphasising the ocean as connecting the two places; the Mawson’s Huts Replica Museum aiming (among other things) to “highlight Hobart as the gateway to the Antarctic continent for the Asia Pacific region”; and a biennial Australian Antarctic Festival drawing over twenty thousand visitors, about a sixth of them from interstate or overseas (Hingley). Antarctic links are evident in the city’s natural and built environment: the dolerite columns of Mt Wellington, the statue of the Tasmanian Antarctic explorer Louis Bernacchi on the waterfront, and the wharfs that regularly accommodate icebreakers such as the Aurora Australis and the Astrolabe. Antarctica is figured as a southern neighbour; as historian Tom Griffiths puts it, Tasmanians “grow up with Antarctica breathing down their necks” (5). As an Antarctic City, Hobart mediates access to Antarctica both physically and in the cultural imaginary.Perhaps in recognition of the diverse ways in which a region or a city might be connected to Antarctica, researchers have recently been suggesting critical approaches to the ‘gateway’ label. C. Michael Hall points to a fuzziness in the way the term is applied, noting that it has drifted from its initial definition (drawn from economic geography) as denoting an access and supply point to a hinterland that produces a certain level of economic benefits. While Hall looks to keep the term robustly defined to avoid empty “local boosterism” (272–73), Gabriela Roldan aims to move the concept “beyond its function as an entry and exit door”, arguing that, among other things, the local community should be actively engaged in the Antarctic region (57). Leane, examining the representation of Hobart as a gateway in historical travel texts, concurs that “ingress and egress” are insufficient descriptors of Tasmania’s relationship with Antarctica, suggesting that at least discursively the island is positioned as “part of an Antarctic rim, itself sharing qualities of the polar region” (45). The ARC Linkage Project described above, supported by the Hobart City Council, the State Government and the University of Tasmania, as well as other national and international partners, aims to foster the idea of the Hobart and its counterparts as ‘Antarctic cities’ whose citizens act as custodians for the South Polar region, with a genuine concern for and investment in its future.Near and Far: Local Perspectives A changing climate may once again herald a shift in the identity of the Tasmanian islands. Recognition of the central role of Antarctica in regulating the global climate has generated scientific and political re-evaluation of the region. Antarctica is not only the planet’s largest heat sink but is the engine of global water currents and wind patterns that drive weather patterns and biodiversity across the world (Convey et al. 543). For example, Tas van Ommen’s research into Antarctic glaciology shows the tangible connection between increased snowfall in coastal East Antarctica and patterns of drought southwest Western Australia (van Ommen and Morgan). Hobart has become a global centre of marine and Antarctic science, bringing investment and development to the city. As the global climate heats up, Tasmania—thanks to its low latitude and southerly weather patterns—is one of the few regions in Australia likely to remain temperate. This is already leading to migration from the mainland that is impacting house prices and rental availability (Johnston; Landers 1). The region’s future is therefore closely entangled with its proximity to the far south. Salazar writes that “we cannot continue to think of Antarctica as the end of the Earth” (67). Shifting Antarctica into focus also brings Tasmania in from the margins. As an Antarctic city, Hobart assumes a privileged positioned on the global stage. This allows the city to present itself as central to international research efforts—in contrast to domestic views of the place as a small regional capital. The city inhabits dual identities; it is both on the periphery of Australian concerns and at the centre of Antarctic activity. Tasmania, then, is not in freefall, but rather at the forefront of a push to recognise Antarctica as entangled with its neighbours to the north.AcknowledgementsThis work was supported by the Australian Research Council under LP160100210.ReferencesAntonello, Alessandro. “Finding Place in Antarctica.” Antarctica and the Humanities. Eds. Peder Roberts, Lize-Marie van der Watt, and Adrian Howkins. London: Palgrave Macmillan, 2016. 181–204.Australian Government. Australian Antarctic Strategy and 20 Year Action Plan. Canberra: Commonwealth of Australia, 2016. 15 Apr. 2019. <http://www.antarctica.gov.au/__data/assets/pdf_file/0008/180827/20YearStrategy_final.pdf>.Australian Antarctic Division. “Australia-China Collaboration Strengthens.” Australian Antarctic Magazine 27 Dec. 2014. 15 Apr. 2019. <http://www.antarctica.gov.au/magazine/2011-2015/issue-27-december-2014/in-brief/australia-china-collaboration-strengthens>.Baker, Emily. “Worry at Premier’s Defence of China.” The Mercury 15 Sep. 2018: 9.Baldacchino, G. “Studying Islands: On Whose Terms?” Island Studies Journal 3.1 (2008): 37–56.Barker, Peter F., Gabriel M. Filippelli, Fabio Florindo, Ellen E. Martin, and Howard D. Schere. “Onset and Role of the Antarctic Circumpolar Current.” Deep Sea Research Part II: Topical Studies in Oceanography. 54.21–22 (2007): 2388–98.Bergin, Anthony. “Australia Needs to Strengthen Its Strategic Interests in Antarctica.” Australian Strategic Policy Institute. 29 Apr. 2016. 21 Feb. 2019 <https://www.aspi.org.au/index.php/opinion/australia-needs-strengthen-its-strategic-interests-antarctica>.Boyce, James. 1835: The Founding of Melbourne and the Conquest of Australia. Melbourne: Black Inc., 2011.Burden, Hilary. “Xi Jinping's Tasmania Visit May Seem Trivial, But Is Full of Strategy.” The Guardian 18 Nov. 2014. 19 May 2019 <https://www.theguardian.com/world/2014/nov/18/xi-jinpings-tasmania-visit-lacking-congruity-full-of-strategy>.Bureau of Infrastructure Transport and Regional Economics (BITRE). A Regional Economy: A Case Study of Tasmania. Canberra: Commonwealth of Australia, 2008. 14 May 2019 <http://www.bitre.gov.au/publications/86/Files/report116.pdf>.Chandler, Jo. “The Science Laboratory: From Little Things, Big Things Grow.” Griffith Review: Tasmania: The Tipping Point? 29 (2013) 83–101.Christchurch City Council. Statement of Intent between the Southern Rim Gateway Cities to the Antarctic: Ushuaia, Punta Arenas, Christchurch, Hobart and Cape Town. 25 Sep. 2009. 11 Apr. 2019 <http://archived.ccc.govt.nz/Council/proceedings/2009/September/CnclCover24th/Clause8Attachment.pdf>.Convey, P., R. Bindschadler, G. di Prisco, E. Fahrbach, J. Gutt, D.A. Hodgson, P.A. Mayewski, C.P. Summerhayes, J. Turner, and ACCE Consortium. “Antarctic Climate Change and the Environment.” Antarctic Science 21.6 (2009): 541–63.Cranston, C. “Rambling in Overdrive: Travelling through Tasmanian Literature.” Tasmanian Historical Studies 8.2 (2003): 28–39.Davies, Lynn, Margaret Davies, and Warren Boyles. Mapping Van Diemen’s Land and the Great Beyond: Rare and Beautiful Maps from the Royal Society of Tasmania. Hobart: The Royal Society of Tasmania, 2018.Department of Infrastructure and Regional Development. Guidelines for Analysing Regional Australia Impacts and Developing a Regional Australia Impact Statement. Canberra: Commonwealth of Australia, 2017. 11 Apr. 2019 <https://regional.gov.au/regional/information/rais/>.Dodds, Klaus. “Awkward Antarctic Nationalism: Bodies, Ice Cores and Gateways in and beyond Australian Antarctic Territory/East Antarctica.” Polar Record 53.1 (2016): 16–30.———. Geopolitics in Antarctica: Views from the Southern Oceanic Rim. Chichester: John Wiley, 1997.Griffiths, Tom. “The Breath of Antarctica.” Tasmanian Historical Studies 11 (2006): 4–14.Gutwein, Peter. “Antarctic Gateway Worth $186 Million to Tasmanian Economy.” Hobart: Tasmanian Government, 20 Feb. 2019. 21 Feb. 2019 <http://www.premier.tas.gov.au/releases/antarctic_gateway_worth_$186_million_to_tasmanian_economy>.Hall, C. Michael. “Polar Gateways: Approaches, Issues and Review.” The Polar Journal 5.2 (2015): 257–77. Harwood Andrew. “The Political Constitution of Islandness: The ‘Tasmanian Problem’ and Ten Days on the Island.” PhD Thesis. U of Tasmania, 2011. <http://eprints.utas.edu.au/11855/%5Cninternal-pdf://5288/11855.html>.Hay, Peter. “Destabilising Tasmanian Politics: The Key Role of the Greens.” Bulletin of the Centre for Tasmanian Historical Studies 3.2 (1991): 60–70.Hingley, Rebecca. Personal Communication, 28 Nov. 2018.Johnston, P. “Is the First Wave of Climate Migrants Landing in Hobart?” The Fifth Estate 11 Sep. 2018. 15 Mar. 2019 <https://www.thefifthestate.com.au/urbanism/climate-change-news/climate-migrants-landing-hobart>.Kriwoken, L., and J. Williamson. “Hobart, Tasmania: Antarctic and Southern Ocean Connections.” Polar Record 29.169 (1993): 93–102.Kudelka, John. “The Southerly.” Kudelka Cartoons. 27 Jun. 2014. 21 Feb. 2019 <https://www.kudelka.com.au/2014/06/the-southerly/>.Leane, E., T. Winter, and J.F. Salazar. “Caught between Nationalism and Internationalism: Replicating Histories of Antarctica in Hobart.” International Journal of Heritage Studies 22.3 (2016): 214–27. Leane, Elizabeth. “Tasmania from Below: Antarctic Travellers’ Accounts of a Southern ‘Gateway’.” Studies in Travel Writing 20.1 (2016): 34-48.Mawson’s Huts Replica Museum. “Mission Statement.” 15 Apr. 2019 <http://www.mawsons-huts-replica.org.au/>.Mercer, David. "Australia's Constitution, Federalism and the ‘Tasmanian Dam Case’." Political Geography Quarterly 4.2 (1985): 91–110.Paasi, A. “Deconstructing Regions: Notes on the Scales of Spatial Life.” Environment and Planning A: Economy and Space 23.2 (1991) 239–56.Reddit. “Maps without Tasmania.” 15 Apr. 2019 <https://www.reddit.com/r/MapsWithoutTasmania/>.Roldan, Gabriela. “'A Door to the Ice?: The Significance of the Antarctic Gateway Cities Today.” Journal of Antarctic Affairs 2 (2015): 57–70.Salazar, Juan Francisco. “Geographies of Place-Making in Antarctica: An Ethnographic Epproach.” The Polar Journal 3.1 (2013): 53–71.———, Elizabeth Leane, Liam Magee, and Paul James. “Five Cities That Could Change the Future of Antarctica.” The Conversation 5 Oct. 2016. 19 May 2019 <https://theconversation.com/five-cities-that-could-change-the-future-of-antarctica-66259>.Stratford, Elaine, Godfrey Baldacchino, Elizabeth McMahon, Carol Farbotko, and Andrew Harwood. “Envisioning the Archipelago.” Island Studies Journal 6.2 (2011): 113–30.Tasmanian Climate Change Office. Derivation of the Tasmanian Sea Level Rise Planning Allowances. Aug. 2012. 17 Apr. 2019 <http://www.dpac.tas.gov.au/__data/assets/pdf_file/0003/176331/Tasmanian_SeaLevelRisePlanningAllowance_TechPaper_Aug2012.pdf>.Tasmanian Government Department of State Growth. “Tasmanian Antarctic Gateway Strategy.” Hobart: Tasmanian Government, 12 Dec. 2017. 21 Feb. 2019 <https://www.antarctic.tas.gov.au/__data/assets/pdf_file/0004/164749/Tasmanian_Antarctic_Gateway_Strategy_12_Dec_2017.pdf>.———. “Tasmania Delivers…” Apr. 2016. 15 Apr. 2019 <https://www.antarctic.tas.gov.au/__data/assets/pdf_file/0005/66461/Tasmania_Delivers_Antarctic_Southern_Ocean_web.pdf>.———. “Antarctic Tasmania.” 17 Feb. 2019. 15 Apr. 2019 <https://www.antarctic.tas.gov.au/about/hobarts_antarctic_attractions>.Tasmanian Polar Network. “Welcome to the Tasmanian Polar Network.” 28 Feb. 2019 <https://www.tasmanianpolarnetwork.com.au/>.Terauds, Aleks, and Jasmine Lee. “Antarctic Biogeography Revisited: Updating the Antarctic Conservation Biogeographic Regions.” Diversity and Distributions 22 (2016): 836–40.Van Ommen, Tas, and Vin Morgan. “Snowfall Increase in Coastal East Antarctica Linked with Southwest Western Australian Drought.” Nature Geoscience 3 (2010): 267–72.Wells Economic Analysis. The Contribution of the Antarctic and Southern Ocean Sector to the Tasmanian Economy 2017. 18 Nov. 2018. 15 Apr. 2019 <https://www.stategrowth.tas.gov.au/__data/assets/pdf_file/0010/185671/Wells_Report_on_the_Value_of_the_Antarctic_Sector_2017_18.pdf>.West, J. “Obstacles to Progress: What’s Wrong with Tasmania, Really?” Griffith Review: Tasmania: The Tipping Point? 39 (2013): 31–53.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Curran, Bev. "Portraits of the Translator as an Artist". M/C Journal 4, n.º 4 (1 de agosto de 2001). http://dx.doi.org/10.5204/mcj.1923.

Texto completo da fonte
Resumo:
The effects of translation have been felt in the development of most languages, but it is particularly marked in English language and literature, where it is a highly charged topic because of its fundamental connection with colonial expansion. Britain shaped a "national" literary identity through borrowing from other languages and infected and inflected other languages and literatures in the course of cultural migrations that occurred in Europe since at least the medieval period onward. As Stephen Greenblatt points out in his essay, "Racial Memory and Literary History," the discovery that English is a "mixed, impure, and constantly shifting medium" is not a new one, citing the preface to the first etymological dictionary in English, published in 1689, in which its author describes English as a hybrid tongue: a Composition of most, if not all the Languages of Europe; especially of the Belgick or Low-Dutch, Saxon, Teutonic or High-Dutch, Cambro-British or Welsh, French, Spanish, Italian, and Latin; and now and then of the Old and Modern Danish, and Ancient High-Dutch; also of the Greek, Hebrew, Arabick, Chaldee, Syriack, and Turcick. ((Skinner A3v-A4r, in Greenblatt 52) The "English" literary canon has translated material at its heart; there is the Bible, for instance, and classical works in Greek, which are read and discussed in translation by many who study them. Beowulf is a translation that has been canonized as one of the "original" texts of English literature, and Shakespeare was inspired by translations. Consider, for instance, Greenblatt's description of The Comedy of Errors, where a "Plautine character from a Sicilian city, finding himself in the market square of a city in Asia Minor, invokes Arctic shamanism – and all this had to make sense to a mixed audience in a commercial theater in London" (58), and there is a strong sense of the global cultural discourse that has been translated into a "national" and international canon of literature in English. English as a language and as a literature, however, has not been contained by national boundaries for some time, and in fact is now more comfortably conceived in the plural, or as uncountable, like a multidirectional flow. English has therefore been translated from solid, settled, and certain representations of Anglo-Celtic culture in the singular to a plurality of shifting, hybrid productions and performances which illuminate the tension implicit in cultural exchange. Translation has become a popular trope used by critics to describe that interaction within literatures defined by language rather than nation, and as a mutable and mutual process of reading and reinscription which illuminates relationships of power. The most obvious power relationship that translation represents, of course, is that between the so-called original and the translation; between the creativity of the author and the derivation of the translator. In The Translator's Invisibility (1995), Lawrence Venuti suggests that there is a prevailing conception of the author as a free and unconstrained individual who partially shapes the relationship: "the author freely expresses his thoughts and feelings in writing, which is thus viewed as an original and transparent self-representation, unmediated by transindividual determinants (linguistic, cultural, social) that might complicate authorial individuality" (6). The translation then can only be defined as an inferior representation, "derivative, fake, potentially a false copy" (7) and the translator as performing the translation in the manner of an actor manipulating lines written by someone else: "translators playact as authors, and translations pass for original texts" (7). The transparent translation and the invisibility of the translator, Venuti argues can be seen as "a mystification of troubling proportions, an amazingly successful concealment of the multiple determinants and effects of English-language translation, the multiple hierarchies and exclusions in which it is implicated" (16). That is, translation exerts its own power in constructing identities and representing difference, in addition to the power derived from the "original" text, which, in fact, the translation may resist. Recognition of this power suggests that traditional Western representations of translation as an echo or copy, a slave toiling on the plantation or seductive belle infidèle, each with its clear affinity to sexual and colonial conquest, attempts to deny translation the possibility of its own power and the assertion of its own creative identity. However, the establishment of an alternative power arrangement exists because translations can "masquerade as originals" (Chamberlain 67) and infiltrate and subvert literary systems in disguise. As Susan Stewart contends in Crimes of Writing: Problems in the Containment of Representation, if we "begin with the relation between authority and writing practices rather than with an assumption of authorial originality, we arrive at a quite different sense of history" (9) and, indeed, a different sense of literary creativity. This remainder of this paper will focus on Nicole Brossard's Le désert mauve and Michael Ondaatje's The English Patient, to exemlify how a translator may flaunts her creativity, and allow the cultural position of the translator vis à vis language, history, or gender to be critically exposed by the text itself. Québécoise feminist writer Nicole Brossard's 1987 novel, Le désert mauve [Mauve Desert], is perhaps the most striking example of how a translator foregrounds the creative process of reading and re-writing. Brossard constructed her novel by becoming her own reader and asking questions, imagining dialogues between the characters she had already created. This "interactive discourse" shaped the text, which is a dialogue between two versions of a story, and between two writers, one of whom is an active reader, a translator. Le désert mauve is a structural triptych, consisting of Laure Angstelle's novel, Le désert mauve, and Mauve l'horizon, a translation of Angstelle's book by Maude Laures. In the space between the two sites of writing, the translator imagines the possibilities of the text she has read, "re-imagining the characters' lives, the objects, the dialogue" (Interview, 23 April 96). Between the versions of the desert story, she creates a fluid dimension of désir, or desire, a "space to swim with the words" (Interview). Brossard has said that "before the idea of the novel had definitely shaped itself," she knew that it would be in a "hot place, where the weather, la température, would be almost unbearable: people would be sweating; the light would be difficult" (Mauve Desert: A CD-ROM Translation). That site became the desert of the American southwest with its beauty and danger, its timelessness and history, and its decadent traces of Western civilization in the litter of old bottles and abandoned, rusting cars. The author imagined the desert through the images and words of books she read about the desert, appropriating the flowers and cacti that excited her through their names, seduced her through language. Maude Laures, the translator within Brossard's novel, finds the desert as a dimension of her reading, too: "a space, a landscape, an enigma entered with each reading" (133). From her first readings of a novel she has discovered in a used bookshop, Laures, confronts the "the issue of control. Who owns the meaning of the black marks on the page, the writer or the reader?" (Godard 115), and decides the book will belong to her, "and that she can do everything because she has fallen in love with the book, and therefore she's taken possession of the book, the author, the characters, the desert" (Interview). The translator is fascinated by Mélanie, the 15-year-old narrator, who drives her mother's car across the desert, and who has been captivated by the voice and beauty of the geometrician, Angela Parkins, imagining dialogues between these two characters as they linger in the motel parking lot. But she is unwilling to imagine words with l'homme long (longman), who composes beautiful equations that cause explosions in the desert, recites Sanskrit poems, and thumbs through porno in his hotel room. Le désert mauve was an attempt by Brossard to translate from French to French, but the descriptions of the desert landscape – the saguaro, senita, ocotillos, and arroyo—show Spanish to be the language of the desert. In her translation, Maude Laures increases the code switching and adds more Spanish phrases to her text, and Japanese, too, to magnify the echo of nuclear destruction that resonates in l'homme long's equations. She also renames the character l'homme oblong (O'blongman) to increase the dimension of danger he represents. Linking the desert through language with nuclear testing gives it a "semantic density," as Nicholis Entrikin calls it, that extends far beyond the geographical location to recognize the events embedded in that space through associative memory. L'homme long is certainly linked through language to J Robert Oppenheimer, the director of the original atomic bomb project in Los Alamos, New Mexico and his reference to the Bhagavad Gita after seeing the effects of the atomic bomb: "I/am/become Death—now we are all sons of bitches" (17). The translator distances herself by a translating Death/I /am/death—I'm a sonofabitch" (173). The desert imagined by Laure Angstelle seduces the reader, Maude Laures, and her translation project creates a trajectory which links the heat and light of the desert with the cold and harsh reflective glare of sunlit snow in wintry Montréal, where the "misleading reflections" of the desert's white light is subject to the translator's gaze. Laures leans into the desert peopled with geometricians and scientists and lesbians living under poisonous clouds of smoke that stop time, and tilts her translation in another direction. In the final chapter of Laure Angstelle's novel, Mélanie had danced in the arms of Angela Parkins, only to find she had run out of time: Angela is shot (perhaps by l'homme long) and falls to the dance floor. Maudes Laures is constrained by the story and by reality, but translates "There was no more time" into "One more time," allowing the lovers' dance to continue for at least another breath, room for another ending. Brossard has asserted that, like lesbian desire or the translator, the desert was located in the background of our thoughts. Ondaatje's novel, The English Patient (1992), locates the translator in the desert, linking a profession and a place which have both witnessed an averting of Western eyes, both used in linguistic and imperial enterprises that operate under conditions of camouflage. Linked also by association is the war in the Sahara and the nuclear bombs dropped on Japan. As in Brossard, the desert here is a destination reached by reading, how "history enters us" through maps and language. Almásy, "the English patient," knew the desert before he had been there, "knew when Alexander had traversed it in an earlier age, for this cause or that greed" (18). Books in code also serve to guide spies and armies across the desert, and like a book, the desert is "crowded with the world" (285), while it is "raped by war and shelled as if it were just sand" (257). Here the translator is representative of a writing that moves between positions and continually questions its place in history. Translators and explorers write themselves out of a text, rendering themselves invisible and erasing traces of their emotions, their doubts, beliefs, and loves, in order to produce a "neutral" text, much in the way that colonialism empties land of human traces in order to claim it, or the way technology is airbrushed out of the desert in order to conceal "the secret of the deserts from Unweinat to Hiroshima" (295). Almásy the translator, the spy, whose identity is always a subject of speculation, knows how the eye can be fooled as it reads a text in disguise; floating on a raft of morphine, he rewrites the monotone of history in different modes, inserting between the terse lines of commentary a counternarrative of love illumined by "the communal book of moonlight" (261), which translates lives and gives them new meaning. The translator's creativity stems from a collaboration and a love for the text; to deny the translation process its creative credibility is synonymous in The English Patient with the denial of any desire that may violate the social rules of the game of love by unfairly demanding fidelity. If seas move away to leave shifting desert sands, why should lovers not drift, or translations? Ultimately, we are all communal translations, says Ondaatje's novel, of the shifting relationship between histories and personal identities. "We are not owned or monogamous in our taste or experience" (261). This representation of the translator resists the view of identity "which attempts to recover an immutable origin, a fixed and eternal representation of itself" (Ashcroft 4) by its insistence that we are transformed in and by our versions of reality, just as we are by our readings of fiction. The translators represented in Brossard and Ondaatje suggest that the process of translation is a creative one, which acknowledges influence, contradictory currents, and choice its heart. The complexity of the choices a translator makes and the mulitiplicity of positions from which she may write suggest a process of translation that is neither transparent nor complete. Rather than the ubiquitous notion of the translator as "a servant an invisible hand mechanically turning the word of one language into another" (Godard 91), the translator creatively 'forges in the smithy of the soul' a version of story that is a complex "working model of inclusive consciousness" (Heaney 8) that seeks to loosen another tongue and another reading in an eccentric literary version of oral storytelling. References Ashcroft, Bill. Post-Colonial Transformation. London and New York: Routledge, 2001. Brossard, Nicole. Le désert mauve. Montréal: l'Hexagone, 1987. Mauve Desert. Trans. Susanne Lotbinière-Harwood. Toronto: Coach House Press, 1990. Brossard, Nicole. Personal Interview. With Beverley Curran and Mitoko Hirabayashi, Montreal, April 1996. Chamberlain, Lori. "Gender and the Metaphorics of Translation." Reinventing Translation. Lawrence Venuti, Ed. 57-73. Godard, Barbara. "Translating (With) the Speculum." Traduction, Terminologie, Rédaction 4 (2) 1991: 85-121. Greenblatt, Stephen. "Racial Memory and Literary History." PMLA 116 (1), January 2001: 48-63. Heaney, Seamus. "The Redress of Poetry." The Redress of Poetry: Oxford Lectures. London, Boston: Faber and Faber, 1995. 1-16. Jenik, Adriene. Mauve Desert: A CD-ROM Translation. Los Angeles: Shifting Horizon Productions, 1997. Ondaatje, Michael. The English Patient. Toronto: Vintage Books, 1993. Stewart, Susan. Crimes of Writing: Problems in the Containment of Representation. New York, Oxford: Oxford UP, 1991. Venuti, Lawrence. The Translator's Invisibility: A History of Translation. London, New York: Routledge, 1995.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Chavdarov, Anatoliy V. "Special Issue No. – 10, June, 2020 Journal > Special Issue > Special Issue No. – 10, June, 2020 > Page 5 “Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia MORPHOLOGICAL AND ANATOMICAL FEATURES OF THE GENUS GAGEA SALISB., GROWING IN THE EAST KAZAKHSTAN REGION Authors: Zhamal T. Igissinova,Almash A. Kitapbayeva,Anargul S. Sharipkhanova,Alexander L. Vorobyev,Svetlana F. Kolosova,Zhanat K. Idrisheva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00041 Abstract: Due to ecological preferences among species of the genus GageaSalisb, many plants are qualified as rare and/or endangered. Therefore, the problem of rational use of natural resources, in particular protection of early spring plant species is very important. However, literary sources analysis only reveals data on the biology of species of this genus. The present research,conducted in the spring of 2017-2019, focuses on anatomical and morphological features of two Altai species: Gagealutea and Gagea minima; these features were studied, clarified and confirmed by drawings and photographs. The anatomical structure of the stem and leaf blade was studied in detail. The obtained research results will prove useful for studies of medicinal raw materials and honey plants. The aforementioned species are similar in morphological features, yet G. minima issmaller in size, and its shoots appear earlier than those of other species Keywords: Flora,gageas,Altai species,vegetative organs., Refference: I. Atlas of areas and resources of medicinal plants of Kazakhstan.Almaty, 2008. II. Baitenov M.S. Flora of Kazakhstan.Almaty: Ġylym, 2001. III. DanilevichV. G. ThegenusGageaSalisb. of WesternTienShan. PhD Thesis, St. Petersburg,1996. IV. EgeubaevaR.A., GemedzhievaN.G. The current state of stocks of medicinal plants in some mountain ecosystems of Kazakhstan.Proceedings of the international scientific conference ‘”Results and prospects for the development of botanical science in Kazakhstan’, 2002. V. Kotukhov Yu.A. New species of the genus Gagea (Liliaceae) from Southern Altai. Bot. Journal.1989;74(11). VI. KotukhovYu.A. ListofvascularplantsofKazakhstanAltai. Botan. Researches ofSiberiaandKazakhstan.2005;11. VII. KotukhovYu. The current state of populations of rare and endangered plants in Eastern Kazakhstan. Almaty: AST, 2009. VIII. Kotukhov Yu.A., DanilovaA.N., AnufrievaO.A. Synopsisoftheonions (AlliumL.) oftheKazakhstanAltai, Sauro-ManrakandtheZaisandepression. BotanicalstudiesofSiberiaandKazakhstan. 2011;17: 3-33. IX. Kotukhov, Yu.A., Baytulin, I.O. Rareandendangered, endemicandrelictelementsofthefloraofKazakhstanAltai. MaterialsoftheIntern. scientific-practical. conf. ‘Sustainablemanagementofprotectedareas’.Almaty: Ridder, 2010. X. Krasnoborov I.M. et al. The determinant of plants of the Republic of Altai. Novosibirsk: SB RAS, 2012. XI. Levichev I.G. On the species status of Gagea Rubicunda. Botanical Journal.1997;6:71-76. XII. Levichev I.G. A new species of the genus Gagea (Liliaceae). Botanical Journal. 2000;7: 186-189. XIII. Levichev I.G., Jangb Chang-gee, Seung Hwan Ohc, Lazkovd G.A.A new species of genus GageaSalisb.(Liliaceae) from Kyrgyz Republic (Western Tian Shan, Chatkal Range, Sary-Chelek Nature Reserve). Journal of Asia-Pacific Biodiversity.2019; 12: 341-343. XIV. Peterson A., Levichev I.G., Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution.2008; 46. XV. Peruzzi L., Peterson A., Tison J.-M., Peterson J. Phylogenetic relationships of GageaSalisb.(Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Systematics and Evolution; 2008: 276. XVI. Rib R.D. Honey plants of Kazakhstan. Advertising Digest, 2013. XVII. Scherbakova L.I., Shirshikova N.A. Flora of medicinal plants in the vicinity of Ust-Kamenogorsk. Collection of materials of the scientific-practical conference ‘Unity of Education, Science and Innovation’. Ust-Kamenogorsk: EKSU, 2011. XVIII. syganovA.P. PrimrosesofEastKazakhstan. Ust-Kamenogorsk: EKSU, 2001. XIX. Tsyganov A.P. Flora and vegetation of the South Altai Tarbagatay. Berlin: LAP LAMBERT,2014. XX. Utyasheva, T.R., Berezovikov, N.N., Zinchenko, Yu.K. ProceedingsoftheMarkakolskStateNatureReserve. Ust-Kamenogorsk, 2009. XXI. Xinqi C, Turland NJ. Gagea. Flora of China.2000;24: 117-121. XXII. Zarrei M., Zarre S., Wilkin P., Rix E.M. Systematic revision of the genus GageaSalisb. (Liliaceae) in Iran.BotJourn Linn Soc.2007;154. XXIII. Zarrei M., Wilkin P., Ingroille M.J., Chase M.W. A revised infrageneric classification for GageaSalisb. (Tulipeae; Liliaceae): insights from DNA sequence and morphological data.Phytotaxa.2011:5. View | Download INFLUENCE OF SUCCESSION CROPPING ON ECONOMIC EFFICIENCY OF NO-TILL CROP ROTATIONS Authors: Victor K. Dridiger,Roman S. Stukalov,Rasul G. Gadzhiumarov,Anastasiya A. Voropaeva,Viktoriay A. Kolomytseva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00042 Abstract: This study was aimed at examining the influence of succession cropping on the economic efficiency of no-till field crop rotations on the black earth in the zone of unstable moistening of the Stavropol krai. A long-term stationary experiment was conducted to examine for the purpose nine field crop rotation patterns different in the number of fields (four to six), set of crops, and their succession in crop rotation. The respective shares of legumes, oilseeds, and cereals in the cropping pattern were 17 to 33, 17 to 40, and 50 to 67 %. It has been established that in case of no-till field crop cultivation the economic efficiency of plant production depends on the set of crops and their succession in rotation. The most economically efficient type of crop rotation is the soya-winter wheat-peas-winter wheat-sunflower-corn six-field rotation with two fields of legumes: in this rotation 1 ha of crop rotation area yields 3 850 grain units per ha at a grain unit prime cost of 5.46 roubles; the plant production output return and profitability were 20,888 roubles per ha and 113 %, respectively. The high production profitabilities provided by the soya-winter wheat-sunflower four-field and the soya-winter-wheat-sunflower-corn-winter wheat five-field crop rotation are 108.7 and 106.2 %, respectively. The inclusion of winter wheat in crop rotation for two years in a row reduces the second winter wheat crop yield by 80 to 100 %, which means a certain reduction in the grain unit harvesting rate to 3.48-3.57 thousands per ha of rotation area and cuts the production profitability down to 84.4-92.3 %. This is why, no-till cropping should not include winter wheat for a second time Keywords: No-till technology,crop rotation,predecessor,yield,return,profitability, Refference: I Badakhova G. Kh. and Knutas A. V., Stavropol Krai: Modern Climate Conditions [Stavropol’skiykray: sovremennyyeklimaticheskiyeusloviya]. Stavropol: SUE Krai Communication Networks, 2007. II Cherkasov G. N. and Akimenko A. S. Scientific Basis of Modernization of Crop Rotations and Formation of Their Systems according to the Specializations of Farms in the Central Chernozem Region [Osnovy moderniz atsiisevooborotoviformirovaniyaikh sistem v sootvetstvii so spetsi-alizatsiyeykhozyaystvTsentral’nogoChernozem’ya]. Zemledelie. 2017; 4: 3-5. III Decree 330 of July 6, 2017 the Ministry of Agriculture of Russia “On Approving Coefficients of Converting to Agricultural Crops to Grain Units [Ob utverzhdeniikoeffitsiyentovperevoda v zernovyyee dinitsysel’s kokhozyaystvennykhkul’tur]. IV Dridiger V. K., About Methods of Research of No-Till Technology [O metodikeissledovaniytekhnologii No-till]//Achievements of Science and Technology of AIC (Dostizheniyanaukiitekhniki APK). 2016; 30 (4): 30-32. V Dridiger V. K. and Gadzhiumarov R. G. Growth, Development, and Productivity of Soya Beans Cultivated On No-Till Technology in the Zone of Unstable Moistening of Stavropol Region [Rost, razvitiyeiproduktivnost’ soiprivozdelyvaniipotekhnologii No-till v zone ne-ustoychivog ouvlazhneniyaStavropol’skogokraya]//Oil Crops RTBVNIIMK (Maslichnyyekul’turyNTBVNIIMK). 2018; 3 (175): 52–57. VI Dridiger V. K., Godunova E. I., Eroshenko F. V., Stukalov R. S., Gadzhiumarov, R. G., Effekt of No-till Technology on erosion resistance, the population of earthworms and humus content in soil (Vliyaniyetekhnologii No-till naprotivoerozionnuyuustoychivost’, populyatsiyudozhdevykhcherveyisoderzhaniyegumusa v pochve)//Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9 (2): 766-770. VII Karabutov A. P., Solovichenko V. D., Nikitin V. V. et al., Reproduction of Soil Fertility, Productivity and Energy Efficiency of Crop Rotations [Vosproizvodstvoplodorodiyapochv, produktivnost’ ienergeticheskayaeffektivnost’ sevooborotov]. Zemledelie. 2019; 2: 3-7. VIII Kulintsev V. V., Dridiger V. K., Godunova E. I., Kovtun V. I., Zhukova M. P., Effekt of No-till Technology on The Available Moisture Content and Soil Density in The Crop Rotation [Vliyaniyetekhnologii No-till nasoderzhaniyedostupnoyvlagiiplotnost’ pochvy v sevoob-orote]// Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8 (6): 795-99. IX Kulintsev V. V., Godunova E. I., Zhelnakova L. I. et al., Next-Gen Agriculture System for Stavropol Krai: Monograph [SistemazemledeliyanovogopokoleniyaStavropol’skogokraya: Monogtafiya]. Stavropol: AGRUS Publishers, Stavropol State Agrarian University, 2013. X Lessiter Frank, 29 reasons why many growers are harvesting higher no-till yields in their fields than some university scientists find in research plots//No-till Farmer. 2015; 44 (2): 8. XI Rodionova O. A. Reproduction and Exchange-Distributive Relations in Farming Entities [Vosproizvodstvoiobmenno-raspredelitel’nyyeotnosheniya v sel’skokhozyaystvennykhorganizatsiyakh]//Economy, Labour, and Control in Agriculture (Ekonomika, trud, upravleniye v sel’skomkhozyaystve). 2010; 1 (2): 24-27. XII Sandu I. S., Svobodin V. A., Nechaev V. I., Kosolapova M. V., and Fedorenko V. F., Agricultural Production Efficiency: Recommended Practices [Effektivnost’ sel’skokhozyaystvennogoproizvodstva (metodicheskiyerekomendatsii)]. Moscow: Rosinforagrotech, 2013. XIII Sotchenko V. S. Modern Corn Cultivation Technologies [Sovremennayatekhnologiyavozdelyvaniya]. Moscow: Rosagrokhim, 2009. View | Download DEVELOPMENT AND TESTING OF AUTONOMOUS PORTABLE SEISMOMETER DESIGNED FOR USE AT ULTRALOW TEMPERATURES IN ARCTIC ENVIRONMENT Authors: Mikhail A. Abaturov,Yuriy V. Sirotinskiy, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00043 Abstract: This paper is concerned with solving one of the issues of the general problem of designing geophysical equipment for the natural climatic environment of the Arctic. The relevance of the topic has to do with an increased global interest in this region. The paper is aimed at considering the basic principles of developing and the procedure of testing seismic instruments for use at ultralow climatic temperatures. In this paper the indicated issue is considered through the example of a seismic module designed for petroleum and gas exploration by passive seismoacoustic methods. The seismic module is a direct-burial portable unit of around 5 kg in weight, designed to continuously measure and record microseismic triaxial orthogonal (ZNE) noise in a range from 0.1 to 45 Hz during several days in autonomous mode. The functional chart of designing the seismic module was considered, and concrete conclusions were made for choosing the necessary components to meet the ultralow-temperature operational requirements. The conclusions made served for developing appropriate seismic module. In this case, the components and tools used included a SAFT MP 176065 xc low-temperature lithium cell, industrial-spec electronic component parts, a Zhaofeng Geophysical ZF-4.5 Chinese primary electrodynamic seismic sensor, housing seal parts made of frost-resistant silicone materials, and finely dispersed silica gel used as water-retaining sorbent to avoid condensation in the housing. The paper also describes a procedure of low-temperature collation tests at the lab using a New Brunswick Scientific freezing plant. The test results proved the operability of the developed equipment at ultralow temperatures down to -55°C. In addition, tests were conducted at low microseismic noises in the actual Arctic environment. The possibility to detect signals in a range from 1 to 10 Hz at the level close to the NLNM limit (the Peterson model) has been confirmed, which allows monitoring and exploring petroleum and gas deposits by passive methods. As revealed by this study, the suggested approaches are efficient in developing high-precision mobile seismic instruments for use at ultralow climatic temperatures. The solution of the considered instrumentation and methodical issues is of great practical significance as a constituent of the generic problem of Arctic exploration. Keywords: Seismic instrumentation,microseismic monitoring,Peterson model,geological exploration,temperature ratings,cooling test, Refference: I. AD797: Ultralow Distortion, Ultralow Noise Op Amp, Analog Devices, Inc., Data Sheet (Rev. K). Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf(Date of access September 2, 2019). II. Agafonov, V. M., Egorov, I. V., and Shabalina, A. S. Operating Principles and Technical Characteristics of a Small-Sized Molecular–Electronic Seismic Sensor with Negative Feedback [Printsipyraboty I tekhnicheskiyekharakteristikimalogabaritnogomolekulyarno-elektronnogoseysmodatchika s otritsatel’noyobratnoysvyaz’yu]. SeysmicheskiyePribory (Seismic Instruments). 2014; 50 (1): 1–8. DOI: 10.3103/S0747923914010022. III. Antonovskaya, G., Konechnaya, Ya.,Kremenetskaya, E., Asming, V., Kvaema, T., Schweitzer, J., Ringdal, F. Enhanced Earthquake Monitoring in the European Arctic. Polar Science. 2015; 1 (9): 158-167. IV. Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, Andr., Anandakrishnan, Sr., Huerta, Audr., Winberry, J. P., Wilson, T., and Rowe, Ch. The Seismic Noise Environment of Antarctica. Seismological Research Letters. 2015; 86(1): 89-100. DOI: 10.1785/0220150005 V. Brincker, R., Lago, T. L., Andersen, P., and Ventura, C. Improving the Classical Geophone Sensor Element by Digital Correction. In Conference Proceedings: IMAC-XXIII: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2005. URL: https://www.researchgate.net/publication/242452637_Improving_the_Classical_Geophone_Sensor_Element_by_Digital_Correction(Date of access September 2, 2019). VI. Bylaw 164 of the State Committee for Construction of the Russian Federation “On adopting amendments to SNiP 31-01-99 “Construction climatology”. URL: https://base.garant.ru/2322381/(Date of access September 2, 2019). VII. Chao Xu, Junbo Wang, Deyong Chen, Jian Chen, Bowen Liu, Wenjie Qi, XichenZheng, Hua Wei, Guoqing Zhang. The Electrochemical Seismometer Based on a Novel Designed.Sensing Electrode for Undersea Exploration. 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS &EUROSENSORS XXXIII). IEEE, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808450. VIII. Chebotareva, I. Ya. New algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation [Novyye algoritmyemissionnoyto mografiidlyapassivnogoseysmicheskogomonitoringarazrabatyvayemykhmestorozhdeniyuglevodorodov. Chast’ I: Algoritmyobrabotki I chislennoyemodelirovaniye]. FizikaZemli. 2010; 46(3):187-98. DOI: 10.1134/S106935131003002X IX. Danilov, A. V. and Konechnaya, Ya. V. Analytical comparison of seismic instruments for stationary surveys in the Arctic [Sravnitel’nyyanalizseysmicheskoyapparaturydlyastatsionarnykhnablyudeniy v Arktike]. DSYS. URL: https://dsys.ru/upload/id254_docPDF_FranzJosefLand.pdf(Date of access September 2, 2019). X. Dew point temperature calculator. Maple Tech. International LLC. URL: https://www.calculator.net/dew-point-calculator.html?airtemperature=20&airtemperatureunit=celsius&humidity=0.34&dewpoint=&dewpointunit=celsius&x=51&y=14(Date of access September 2, 2019). XI. Frolov, A. S. Matching of wave fields recorded by different geophysical receivers [Soglasovaniyevolnovykhpoley, poluchennykh s primeneniyemrazlichnoyregistriruyushcheyapparatury]. Abstracts IX International scientific and technical conference competition of young specialists “Geophysics-2013”. Saint-Petersburg: Gubkin University, 2013. URL: https://www.gubkin.ru/faculty/geology_and_geophysics/chairs_and_departments/exploration_geophysics_and_computers_systems/files/2013_SPb_Frolov.pdf. (Date of access September 2, 2019). XII. Gibbons, S. J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., Vinogradov, Yu. The European Arctic: A laboratory for seismoacoustic studies. Seism. Res. Letters. 2015; 86 (3): 917–928. XIII. GOST 8.395-80. State system for ensuring the uniformity of measurements. Reference conditions of measurements while calibrating. General requirements [Gosudarstvennayasistemaobespecheniyaedinstvaizmereniy. Normal’nyyeusloviyaizmereniypripoverke. Obshchiyetrebovaniya]. Moscow: Standartinform, 2008. URL: http://gostrf.com/normadata/1/4294821/4294821960.pdf (Date of access September 2, 2019). XIV. Guralp 6TD. Operators’ Guide. Document Number: MAN-T60-0002, Issue J: April, 2017. Guralp Systems Limited. URL: https://www.guralp.com/documents/MAN-T60-0002.pdf (Date of access September 2, 2019). XV. Inshakova, A. S., Barykina, E. S., and Kozlov, V. V. Role of silica gel in adsorption air drying [Rol’ silikagelya v adsorbtsionnoyosushkevozdukha]. AlleyaNauki (Alley of Science). 2017; 15. URL: https://www.alley- science.ru/domains_data/files/November2017/ROL%20SILIKAGELYa%20V%20ADSORBCIONNOY%20OSUShKE%20VOZDUHA.pdf(Date of access September 2, 2019). XVI. Ioffe, D. and Pozdnyakov, P. Searching for Hidden Reserves of Modern Microchip Circuits. Part I [Poiskskrytykhrezervovsovremennykhmikroskhem. Chast’ I].Komponenty I tekhnologii (Components and Technologies). 2015; 4: 144-46. XVII. Jiang Xu, Xi Wang, Ningyi Yuan, Jianning Ding, Si Qin, Joselito M. Razal, Xuehang Wang, ShanhaiGe, Gogotsi, Yu. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Materials (IF0). Published 2019-04-27. DOI: 10.1016/j.ensm.2019.04.033. XVIII. Kouznetsov, O. L., Lyasch, Y. F., Chirkin, I. A., Rizanov, E. G., LeRoy, S. D., Koligaev, S. O. Long-term monitoring of microseismic emissions: Earth tides, fracture distribution, and fluid content. SEG, APPG Interpretation. 2016: 4 (2): T191–T204. XIX. Laverov, N. P., Bogoyavlenskiy, V. I., Bogoyavlenskiy, I. V. Fundamental Aspects of Rational Management of the Petroleum and Gas Resources of the Arctic and the Russian Continental Shelf: Strategy, Prospects, and Problems [Fundamental’nyyeaspektyratsional’nogoosvoyeniyaresursovneftiigazaArktiki I shel’faRossii: strategiya, perspektivyi problem].Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2016; 2 (22): 4-13. XX. Lee, P. Low Noise Amplifier Selection Guide for Optimal Noise Performance, Analog Devices, Inc., AN-940 Application Note. Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/application-notes/AN-940.pdf(Date of access September 2, 2019). XXI. Markatis, N., Polychronopoulou, K., Tselentis, Ak. Passive seismic tomography: A passive concept actively evolving. First Break. 2012; 30 (7): 83-90. XXII. Matveev, I. V. and Matveeva, N. V. Portable seismic recorder “SEISAR-5” with very low energy consumption for autonomous work in harsh climatic conditions [Portativnyyseysmicheskiyregistrator «Seysar-5» s ochen’ nizkimenergopotrebleniyemdlyaavtonomnoyraboty v slozhnykhklimatic heskikhusloviyakh]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2017; 96 (3): 33-40. [Special Issue “Applied Geophysics: New Developments and Results. Part 1. Seismology and Seismic Exploration]. DOI: 10.21455/std2017.3-3. XXIII. Mishra, R. The Temperature Ratings of Electronic Parts.Electronics Cooling magazine. URL: http://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts(Date of access September 2, 2019). XXIV. Moore, Sue E.; Stabeno, Phyllis J.; Van Pelt, Thomas I. The Synthesis of Arctic Research (SOAR) project. Deep-Sea Research Part II. 152: 1-7. DOI: 10.1016/j.dsr2.2018.05.013. XXV. MS-SPORT Viscous Silicone Lubricant with Fluoroplastic. ToR2257-010-45540231-2003. OOO VMPAUTO, URL: https://smazka.ru/attachments/get/469/ms-sport-tds.pdf(Date of access September 2, 2019). XXVI. New Brunswick™ Premium -86 °C Freezers. Operating manual. URL: https://www.eppendorf.com/product-media/doc/en/142770_Operating-Manual/New-Brunswick_Freezers_Operating-manual-86-C-Premium-Freezers.pdf(Date of access September 2, 2019). XXVII. New seismic digitizer/recorder for passive seismic monitoring applications. LandTech Enterprises. URL: http://www.landtechsa.com/Images/Instrument/SRi32L/SRi32L.pdf(Date of access September 2, 2019). XXVIII. Parker, T., Winberry, P., Huerta, A., Bainbridge, G., Devanney, P. Direct Burial Broadband Seismic Instrumentation for Polar Environments. Nanometrics Inc. URL: https://www.nanometrics.ca/sites/default/files/2017-11/direct_burial_bb_seismic_instrumentation_for_polar_environments.pdf. (Date of access September 2, 2019). XXIX. Peterson, J. Observation and Modeling of Seismic Background Noise. Albuquerque, New Mexico: US Department of Interior Geological Survey, 1993. XXX. Razinkov, O.G., Sidorov-Biryukov, D. D., Townsend, B., Parker, T., Bainbridge, G., Greiss, R. Strengths and Applications of Direct Burial Seismic Instruments [Preimushchestva I oblastiprimeneniyaseysmicheskikhpriborovdlyapryamoyustanovki v grunt] in Proc. VI Sci. Tech. Conf. “Problems of Complex Geophysical Monitoring of the Russian Far East”, Petropavlovsk-Kamchatskiy: Geophysical Survey, Russian Academy of Sciences, 2017. URL: http://www.emsd.ru/conf2017lib/pdf/techn/razinkov.pdf (Date of access September 2, 2019). XXXI. Roux, Ph., Wathelet, M., Roueff, Ant. The San Andreas Fault revisited through seismic-noise and surface-wave tomography. Geophysical Research Letters. 2011; 38 (13). DOI: 10.1029/2011GL047811. XXXII. Rubber O-ring seals for hydraulic and pneumatic equipment. Specifications [Kol’tsarezinovyyeuplotnitel’nyyekruglogosecheniyadlyagidravlicheskikh I pnevmaticheskikhustroystv. Tekhnicheskiyeusloviya]. GOST 18829-2017 Interstate standard. Moscow: Standartinform, 2017. URL: https://files.stroyinf.ru/Data/645/64562.pdf (Date of access September 2, 2019). XXXIII. Sanina, I., Gabsatarova, I., Chernykh, О.,Riznichenko, О., Volosov, S., Nesterkina, M., Konstantinovskaya, N. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform. Journal of Seismology (JOSE). 2011; 15 (3): 545-56. (DOI: 10.1007/sl0950-010-9211-х). XXXIV. SM-3VK Magnetoelectric Seismic Pickup. Specifications. ToR-4314-001-02698826-01. N. Laverov Federal Centre for Integrated Arctic Research, Russian Academy of Sciences. URL: http://fciarctic.ru/index.php?page=ckpg (Date of access September 2, 2019). XXXV. Sobisevich, A. L.,Presnov, D. A.,Agafonov, V. M.,Sobisevich, L. E. Autonomous geohydroacoustic ice buoy of new generation [Vmorazhivayemyyavtonomnyygeogidroakusticheskiy buy novogopokoleniya]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2018; 97 (1): 25–34. [Special issue “Precise Geophysical Monitoring of Natural Hazards. Part 1. Instruments andTechnologies”]. DOI: 10.21455/ std2018.1-3. XXXVI. Zhukov, Y. V. Issues of resistance and reliability of electronic equipment products to the exposure factors [Voprosystoykosti i nadezhnostiizdeliyradioelektronnoytekhniki k vneshnimvozdeystvuyushchimfaktoram]. Provintsial’nyyenauchnyyezapiski (The journal Provincial scientific proceedings). 2019; 1 (9): 118-124. View | Download COMPARATIVE ANALYSIS OF RESULTS OF TREATMENT OF PATIENTS WITH FOOT PATHOLOGY WHO UNDERWENT WEIL OPEN OSTEOTOMY BY CLASSICAL METHOD AND WITHOUT STEOSYNTHESIS Authors: Yuriy V. Lartsev,Dmitrii A. Rasputin,Sergey D. Zuev-Ratnikov,Pavel V.Ryzhov,Dmitry S. Kudashev,Anton A. Bogdanov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00044 Abstract: The article considers the problem of surgical correction of the second metatarsal bone length. The article analyzes the results of treatment of patients with excess length of the second metatarsal bones that underwent osteotomy with and without osteosynthesis. The results of treatment of patients who underwent metatarsal shortening due to classical Weil-osteotomy with and without osteosynthesis were analyzed. The first group consisted of 34 patients. They underwent classical Weil osteotomy. The second group included 44 patients in whomosteotomy of the second metatarsal bone were not by the screw. When studying the results of the treatment in the immediate postoperative period, weeks 6, 12, slightly better results were observed in patients of the first group, while one year after surgical treatment the results in both groups were comparable. One year after surgical treatment, there were 2.9% (1 patient) of unsatisfactory results in the first group and 4.5% (2 patients) in the second group. Considering the comparability of the results of treatment in remote postoperative period, the choice of concrete method remains with the operating surgeon. Keywords: Flat feet,hallux valgus,corrective osteotomy,metatarsal bones, Refference: I. A novel modification of the Stainsby procedure: surgical technique and clinical outcome [Text] / E. Concannon, R. MacNiocaill, R. Flavin [et al.] // Foot Ankle Surg. – 2014. – Dec., Vol. 20(4). – P. 262–267. II. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method [Text] / L. Osher, M.M. Blazer, S. Buck [et al.] // J. Foot Ankle Surg. – 2014. – Sep.-Oct., Vol. 53(5). – P. 548–556. III. Argerakis, N.G. The radiographic effects of the scarf bunionectomy on rearfoot alignment [Text] / N.G. Argerakis, L.Jr. Weil, L.S. Sr. Weil // Foot Ankle Spec. – 2015. – Apr., Vol. 8(2). – P. 89–94. IV. Bauer, T. Percutaneous forefoot surgery [Text] / T. Bauer // Orthop. Traumatol. Surg. Res. – 2014. – Feb., Vol. 100(1 Suppl.). – P. S191–S204. V. Biomechanical Evaluation of Custom Foot Orthoses for Hallux Valgus Deformity [Text] // J. Foot Ankle Surg. – 2015. – Sep.-Oct., Vol.54(5). – P. 852–855. VI. Chopra, S. Characterization of gait in female patients with moderate to severe hallux valgus deformity [Text] / S. Chopra, K. Moerenhout, X. Crevoisier // Clin. Biomech. (Bristol, Avon). – 2015. – Jul., Vol. 30(6). – P. 629–635. VII. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report [Text] / M. Hirao, S. Ikemoto, H. Tsuboi [et al.] // Comput. Aided Surg. – 2014. – Vol. 19(1-3). – P. 13–19. VIII. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model [Text] / D.Y. Lee, S.G. Seo, E.J. Kim [et al.] // Foot Ankle Int. – 2015. – Jan., Vol.36(1). – P. 1–10. IX. Correlative study between length of first metatarsal and transfer metatarsalgia after osteotomy of first metatarsal [Text]: [Article in Chinese] / F.Q. Zhang, B.Y. Pei, S.T. Wei [et al.] // Zhonghua Yi XueZaZhi. – 2013. – Nov. 19, Vol. 93(43). – P. 3441–3444. X. Dave, M.H. Forefoot Deformity in Rheumatoid Arthritis: A Comparison of Shod and Unshod Populations [Text] / M.H. Dave, L.W. Mason, K. Hariharan // Foot Ankle Spec. – 2015. – Oct., Vol. 8(5). – P. 378–383. XI. Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates [Text] / F. Dalat, F. Cottalorda, M.H. Fessy [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6). – P. 709–714. XII. Dynamic plantar pressure distribution after percutaneous hallux valgus correction using the Reverdin-Isham osteotomy [Text]: [Article in Spanish] / G. Rodríguez-Reyes, E. López-Gavito, A.I. Pérez-Sanpablo [et al.] // Rev. Invest. Clin. – 2014. – Jul., Vol. 66, Suppl. 1. – P. S79-S84. XIII. Efficacy of Bilateral Simultaneous Hallux Valgus Correction Compared to Unilateral [Text] / A.V. Boychenko, L.N. Solomin, S.G. Parfeyev [et al.] // Foot Ankle Int. – 2015. – Nov., Vol. 36(11). – P. 1339–1343. XIV. Endolog technique for correction of hallux valgus: a prospective study of 30 patients with 4-year follow-up [Text] / C. Biz, M. Corradin, I. Petretta [et al.] // J. OrthopSurg Res. – 2015. – Jul. 2, № 10. – P. 102. XV. First metatarsal proximal opening wedge osteotomy for correction of hallux valgus deformity: comparison of straight versus oblique osteotomy [Text] / S.H. Han, E.H. Park, J. Jo [et al.] // Yonsei Med. J. – 2015. – May, Vol. 56(3). – P. 744–752. XVI. Long-term outcome of joint-preserving surgery by combination metatarsal osteotomies for shortening for forefoot deformity in patients with rheumatoid arthritis [Text] / H. Niki, T. Hirano, Y. Akiyama [et al.] // Mod. Rheumatol. – 2015. – Sep., Vol. 25(5). – P. 683–638. XVII. Maceira, E. Transfer metatarsalgia post hallux valgus surgery [Text] / E. Maceira, M. Monteagudo // Foot Ankle Clin. – 2014. – Jun., Vol. 19(2). – P.285–307. XVIII. Nielson, D.L. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware [Text] / D.L. Nielson, N.J. Young, C.M. Zelen // Clin. Podiatr. Med. Surg. – 2013. – Jul., Vol. 30(3). – P. 283–293 XIX. Patient’s satisfaction after outpatient forefoot surgery: Study of 619 cases [Text] / A. Mouton, V. Le Strat, D. Medevielle [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6 Suppl.). – P. S217–S220. XX. Preference of surgical procedure for the forefoot deformity in the rheumatoid arthritis patients–A prospective, randomized, internal controlled study [Text] / M. Tada, T. Koike, T. Okano [et al.] // Mod. Rheumatol. – 2015. – May., Vol. 25(3). – P.362–366. XXI. Redfern, D. Percutaneous Surgery of the Forefoot [Text] / D. Redfern, J. Vernois, B.P. Legré // Clin. Podiatr. Med. Surg. – 2015. – Jul., Vol. 32(3). – P. 291–332. XXII. Singh, D. Bullous pemphigoid after bilateral forefoot surgery [Text] / D. Singh, A. Swann // Foot Ankle Spec. – 2015. – Feb., Vol. 8(1). – P. 68–72. XXIII. Treatment of moderate hallux valgus by percutaneous, extra-articular reverse-L Chevron (PERC) osteotomy [Text] / J. Lucas y Hernandez, P. Golanó, S. Roshan-Zamir [et al.] // Bone Joint J. – 2016. – Mar., Vol. 98-B(3). – P. 365–373. XXIV. Weil, L.Jr. Scarf osteotomy for correction of hallux abducto valgus deformity [Text] / L.Jr. Weil, M. Bowen // Clin. Podiatr. Med. Surg. – 2014. – Apr., Vol.31(2). – P. 233–246. View | Download QUANTITATIVE ULTRASONOGRAPHY OF THE STOMACH AND SMALL INTESTINE IN HEALTHYDOGS Authors: Roman A. Tcygansky,Irina I. Nekrasova,Angelina N. Shulunova,Alexander I.Sidelnikov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00045 Abstract: Purpose.To determine the quantitative echogenicity indicators (and their ratio) of the layers of stomach and small intestine wall in healthy dogs. Methods. A prospective 3-year study of 86 healthy dogs (aged 1-7 yrs) of different breeds and of both sexes. Echo homogeneity and echogenicity of the stomach and intestines wall were determined by the method of Silina, T.L., et al. (2010) in absolute values ​​of average brightness levels of ultrasound image pixels using the 8-bit scale with 256 shades of gray. Results. Quantitative echogenicity indicators of the stomach and the small intestine wall in dogs were determined. Based on the numerical values ​​characterizing echogenicity distribution in each layer of a separate structure of the digestive system, the coefficient of gastric echogenicity is determined as 1:2.4:1.1 (mucosa/submucosa/muscle layers, respectively), the coefficient of duodenum and jejunum echogenicity is determined as 1:3.5:2 and that of ileum is 1:1.8:1. Clinical significance. The echogenicity coefficient of the wall of the digestive system allows an objective assessment of the stomach and intestines wall and can serve as the basis for a quantitative assessment of echogenicity changes for various pathologies of the digestive system Keywords: Ultrasound (US),echogenicity,echogenicity coefficient,digestive system,dogs,stomach,intestines, Refference: I. Agut, A. Ultrasound examination of the small intestine in small animals // Veterinary focus. 2009.Vol. 19. No. 1. P. 20-29. II. Bull. 4.RF patent 2398513, IPC51A61B8 / 00 A61B8 / 14 (2006.01) A method for determining the homoechogeneity and the degree of echogenicity of an ultrasound image / T. Silina, S. S. Golubkov. – No. 2008149311/14; declared 12/16/2008; publ. 09/10/2010 III. Choi, M., Seo, M., Jung, J., Lee, K., Yoon, J., Chang, D., Park, RD. Evaluation of canine gastric motility with ultrasonography // J. of Veterinary Medical Science. – 2002. Vol. 64. – № 1. – P. 17-21. IV. Delaney, F., O’Brien, R.T., Waller, K.Ultrasound evaluation of small bowel thickness compared to weight in normal dogs // Veterinary Radiology and Ultrasound. 2003 Vol. 44, № 5. Р 577-580. V. Diana, A., Specchi, S., Toaldo, M.B., Chiocchetti, R., Laghi, A., Cipone, M. Contrast-enhanced ultrasonography of the small bowel in healthy cats // Veterinary Radiology and Ultrasound. – 2011. – Vol. 52, № 5. – Р. 555-559. VI. Garcia, D.A.A., Froes, T.R. Errors in abdominal ultrasonography in dogs and cats // J. of Small Animal Practice. – 2012. Vol. 53. – № 9. – P. 514-519. VII. Garcia, D.A.A., Froes, T.R. Importance of fasting in preparing dogs for abdominal ultrasound examination of specific organs // J. of Small Animal Practice. – 2014. Vol. 55. – № 12. – P. 630-634. VIII. Gaschen, L., Granger, L.A., Oubre, O., Shannon, D., Kearney, M., Gaschen, F. The effects of food intake and its fat composition on intestinal echogenicity in healthy dogs // Veterinary Radiology and Ultrasound. 2016. Vol. 57. № 5. P. 546-550 IX. Gaschen, L., Kircher, P., Stussi, A., Allenspach, K., Gaschen, F., Doherr, M., Grone, A. Comparison of ultrasonographic findings with clinical activity index (CIBDAI) and diagnosis in dogs with chronic enteropathies // Veterinary radiology and ultrasound. – 2008. – Vol. 49. – № 1. – Р. 56-64. X. Gil, E.M.U. Garcia, D.A.A. Froes, T.R. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs // Theriogenology. 2015. Vol. 84, №5. Р. 681-686. XI. Gladwin, N.E. Penninck, D.G., Webster, C.R.L. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs // American Journal of Veterinary Research. 2014. Vol. 75, №4. Р. 349-353. XII. Gory, G., Rault, D.N., Gatel, L, Dally, C., Belli, P., Couturier, L., Cauvin, E. Ultrasonographic characteristics of the abdominal esophagus and cardia in dogs // Veterinary Radiology and Ultrasound. 2014. Vol. 55, № 5. P. 552-560. XIII. Günther, C.S. Lautenschläger, I.E., Scholz, V.B. Assessment of the inter- and intraobserver variability for sonographical measurement of intestinal wall thickness in dogs without gastrointestinal diseases | [Inter-und Intraobserver-Variabilitätbei der sonographischenBestimmung der Darmwanddicke von HundenohnegastrointestinaleErkrankungen] // Tierarztliche Praxis Ausgabe K: Kleintiere – Heimtiere. 2014. Vol. 42 №2. Р. 71-78. XIV. Hanazono, K., Fukumoto, S., Hirayama, K., Takashima, K., Yamane, Y., Natsuhori, M., Kadosawa, T., Uchide, T. Predicting Metastatic Potential of gastrointestinal stromal tumors in dog by ultrasonography // J. of Veterinary Medical Science. – 2012. Vol. 74. – № 11. – P. 1477-1482. XV. Heng, H.G., Lim, Ch.K., Miller, M.A., Broman, M.M.Prevalence and significance of an ultrasonographic colonic muscularishyperechoic band paralleling the serosal layer in dogs // Veterinary Radiology and Ultrasound. 2015. Vol. 56 № 6. P. 666-669. XVI. Ivančić, M., Mai, W. Qualitative and quantitative comparison of renal vs. hepatic ultrasonographic intensity in healthy dogs // Veterinary Radiology and Ultrasound. 2008. Vol. 49. № 4. Р. 368-373. XVII. Lamb, C.R., Mantis, P. Ultrasonographic features of intestinal intussusception in 10 dogs // J. of Small Animal Practice. – 2008. Vol. 39. – № 9. – P. 437-441. XVIII. Le Roux, A. B., Granger, L.A., Wakamatsu, N, Kearney, M.T., Gaschen, L.Ex vivo correlation of ultrasonographic small intestinal wall layering with histology in dogs // Veterinary Radiology and Ultrasound.2016. Vol. 57. № 5. P. 534-545. XIX. Nielsen, T. High-frequency ultrasound of Peyer’s patches in the small intestine of young cats / T. Nielsen [et al.] // Journal of Feline Medicine and Surgery. – 2015. – Vol. 18, № 4. – Р. 303-309. XX. PenninckD.G. Gastrointestinal tract. In Nyland T.G., Mattoon J.S. (eds): Small Animal Diagnostic Ultrasound. Philadelphia: WB Saunders. 2002, 2nd ed. Р. 207-230. XXI. PenninckD.G. Gastrointestinal tract. In: PenninckD.G.,d´Anjou M.A. Atlas of Small Animal Ultrasonography. Blackwell Publishing, Iowa. 2008. Р. 281-318. XXII. Penninck, D.G., Nyland, T.G., Kerr, L.Y., Fisher, P.E. Ultrasonographic evaluation of gastrointestinal diseases in small animals // Veterinary Radiology. 1990. Vol. 31. №3. P. 134-141. XXIII. Penninck, D.G.,Webster, C.R.L.,Keating, J.H. The sonographic appearance of intestinal mucosal fibrosis in cats // Veterinary Radiology and Ultrasound. – 2010. – Vol. 51, № 4. – Р. 458-461. XXIV. Pollard, R.E.,Johnson, E.G., Pesavento, P.A., Baker, T.W., Cannon, A.B., Kass, P.H., Marks, S.L. Effects of corn oil administered orally on conspicuity of ultrasonographic small intestinal lesions in dogs with lymphangiectasia // Veterinary Radiology and Ultrasound. 2013. Vol. 54. № 4. P. 390-397. XXV. Rault, D.N., Besso, J.G., Boulouha, L., Begon, D., Ruel, Y. Significance of a common extended mucosal interface observed in transverse small intestine sonograms // Veterinary Radiology and Ultrasound. 2004. Vol. 45. №2. Р. 177-179. XXVI. Sutherland-Smith, J., Penninck, D.G., Keating, J.H., Webster, C.R.L. Ultrasonographic intestinal hyperechoic mucosal striations in dogs are associated with lacteal dilation // Veterinary Radiology and Ultrasound. – 2007. Vol. 48. – № 1. – P. 51-57. View | Download EVALUATION OF ADAPTIVE POTENTIAL IN MEDICAL STUDENTS IN THE CONTEXT OF SEASONAL DYNAMICS Authors: Larisa A. Merdenova,Elena A. Takoeva,Marina I. Nartikoeva,Victoria A. Belyayeva,Fatima S. Datieva,Larisa R. Datieva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00046 Abstract: The aim of this work was to assess the functional reserves of the body to quantify individual health; adaptation, psychophysiological characteristics of the health quality of medical students in different seasons of the year. When studying the temporal organization of physiological functions, the rhythm parameters of physiological functions were determined, followed by processing the results using the Cosinor Analysis program, which reveals rhythms with an unknown period for unequal observations, evaluates 5 parameters of sinusoidal rhythms (mesor, amplitude, acrophase, period, reliability). The essence of desynchronization is the mismatch of circadian rhythms among themselves or destruction of the rhythms architectonics (instability of acrophases or their disappearance). Desynchronization with respect to the rhythmic structure of the body is of a disregulatory nature, most pronounced in pathological desynchronization. High neurotism, increased anxiety reinforces the tendency to internal desynchronization, which increases with stress. During examination stress, students experience a decrease in the stability of the temporary organization of the biosystem and the tension of adaptive mechanisms develops, which affects attention, mental performance and the quality of adaptation to the educational process. Time is shortened and the amplitude of the “initial minute” decreases, personal and situational anxiety develops, and the level of psychophysiological adaptation decreases. The results of the work are priority because they can be used in assessing quality and level of health. Keywords: Desynchronosis,biorhythms,psycho-emotional stress,mesor,acrophase,amplitude,individual minute, Refference: I. Arendt, J., Middleton, B. Human seasonal and circadian studies in Antarctica (Halley, 75_S) – General and Comparative Endocrinology. 2017: 250-259. (http://dx.doi.org/10.1016/j.ygcen.2017.05.010). II. BalandinYu.P. A brief methodological guide on the use of the agro-industrial complex “Health Sources” / Yu.P. Balandin, V.S. Generalov, V.F. Shishlov. Ryazan, 2007. III. Buslovskaya L.K. Adaptation reactions in students at exam stress/ L.K. Buslovskaya, Yu.P. Ryzhkova. Scientific bulletin of Belgorod State University. Series: Natural Sciences. 2011;17(21):46-52. IV. Chutko L. S. Sindromjemocionalnogovygoranija – Klinicheskie I psihologicheskieaspekty./ L.S Chutko. Moscow: MEDpress-inform, 2013. V. Eroshina K., Paul Wilkinson, Martin Mackey. The role of environmental and social factors in the occurrence of diseases of the respiratory tract in children of primary school age in Moscow. Medicine. 2013:57-71. VI. Fagrell B. “Microcirculation of the Skin”. The physiology and pharmacology of the microcirculation. 2013:423. VII. Gurova O.A. Change in blood microcirculation in students throughout the day. New research. 2013; 2 (35):66-71. VIII. Khetagurova L.G. – Stress/Ed. L.G. Khetagurov. Vladikavkaz: Project-Press Publishing House, 2010. IX. Khetagurova L.G., Urumova L.T. et al. Stress (chronomedical aspects). International Journal of Experimental Education 2010; 12: 30-31. X. Khetagurova L.G., Salbiev K.D., Belyaev S.D., Datieva F.S., Kataeva M.R., Tagaeva I.R. Chronopathology (experimental and clinical aspects/ Ed. L.G. Khetagurov, K.D. Salbiev, S.D.Belyaev, F.S. Datiev, M.R. Kataev, I.R. Tagaev. Moscow: Science, 2004. XI. KlassinaS.Ya. Self-regulatory reactions in the microvasculature of the nail bed of fingers in person with psycho-emotional stress. Bulletin of new medical technologies, 2013; 2 (XX):408-412. XII. Kovtun O.P., Anufrieva E.V., Polushina L.G. Gender-age characteristics of the component composition of the body in overweight and obese schoolchildren. Medical Science and Education of the Urals. 2019; 3:139-145. XIII. Kuchieva M.B., Chaplygina E.V., Vartanova O.T., Aksenova O.A., Evtushenko A.V., Nor-Arevyan K.A., Elizarova E.S., Efremova E.N. A comparative analysis of the constitutional features of various generations of healthy young men and women in the Rostov Region. Modern problems of science and education. 2017; 5:50-59. XIV. Mathias Adamsson1, ThorbjörnLaike, Takeshi Morita – Annual variation in daily light expo-sure and circadian change of melatonin and cortisol consent rations at a northern latitude with large seasonal differences in photoperiod length – Journal of Physiological Anthropology. 2017; 36: 6 – 15. XV. Merdenova L.A., Tagaeva I.R., Takoeva E.A. Features of the study of biological rhythms in children. The results of fundamental and applied research in the field of natural and technical sciences. Materials of the International Scientific and Practical Conference. Belgorod, 2017, pp. 119-123. XVI. Ogarysheva N.V. The dynamics of mental performance as a criterion for adapting to the teaching load. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014;16:5 (1): S.636-638. XVII. Pekmezovi T. Gene-environment interaction: A genetic-epidemiological approach. Journal of Medical Biochemistry. 2010;29:131-134. XVIII. Rapoport S.I., Chibisov S.M. Chronobiology and chronomedicine: history and prospects/Ed. S.M. Chibisov, S.I. Rapoport ,, M.L. Blagonravova. Chronobiology and Chronomedicine: Peoples’ Friendship University of Russia (RUDN) Press. Moscow, 2018. XIX. Roustit M., Cracowski J.L. “Non-invasive assessment of skin microvascular function in humans: an insight into methods” – Microcirculation 2012; 19 (1): 47-64. XX. Rud V.O., FisunYu.O. – References of the circadian desinchronosis in students. Ukrainian Bulletin of Psychoneurology. 2010; 18(2) (63): 74-77. XXI. Takoeva Z. A., Medoeva N. O., Berezova D. T., Merdenova L. A. et al. Long-term analysis of the results of chronomonitoring of the health of the population of North Ossetia; Vladikavkaz Medical and Biological Bulletin. 2011; 12(12,19): 32-38. XXII. Urumova L.T., Tagaeva I.R., Takoeva E.A., Datieva L.R. – The study of some health indicators of medical students in different periods of the year. Health and education in the XXI century. 2016; 18(4): 94-97. XXIII. Westman J. – Complex diseases. In: Medical genetics for the modern clinician. USA: Lippincott Williams & Wilkins, 2006. XXIV. Yadrischenskaya T.V. Circadian biorhythms of students and their importance in educational activities. Problems of higher education. Pacific State University Press. 2016; 2:176-178. View | Download TRIADIC COMPARATIVE ANALYSIS Authors: Stanislav A.Kudzh,Victor Ya. Tsvetkov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00047 Abstract: The present study of comparison methods based on the triadic model introduces the following concepts: the relation of comparability and the relation of comparison, and object comparison and attributive comparison. The difference between active and passive qualitative comparison is shown, two triadic models of passive and active comparison and models for comparing two and three objects are described. Triadic comparison models are proposed as an alternative to dyadic comparison models. Comparison allows finding the common and the different; this approach is proposed for the analysis of the nomothetic and ideographic method of obtaining knowledge. The nomothetic method identifies and evaluates the general, while the ideographic method searches for unique in parameters and in combinations of parameters. Triadic comparison is used in systems and methods of argumentation, as well as in the analysis of consistency/inconsistency. Keywords: Comparative analysis,dyad,triad,triadic model,comparability relation,object comparison,attributive comparison,nomothetic method,ideographic method, Refference: I. AltafS., Aslam.M.Paired comparison analysis of the van Baarenmodel using Bayesian approach with noninformativeprior.Pakistan Journal of Statistics and Operation Research 8(2) (2012) 259{270. II. AmooreJ. E., VenstromD Correlations between stereochemical assessments and organoleptic analysis of odorous compounds. Olfaction and Taste (2016) 3{17. III. BarnesJ., KlingerR. Embedding projection for targeted cross-lingual sentiment: model comparisons and a real-world study. Journal of Artificial Intelligence Research 66 (2019) 691{742. doi.org/10.1613/jair.1.11561 IV. Castro-SchiloL., FerrerE.Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research 48(2) (2013) 175{207. V. De BonaG.et al. Classifying inconsistency measures using graphs. Journal of Artificial Intelligence Research 66 (2019) 937{987. VI. FideliR. La comparazione. Milano: Angeli, 1998. VII. GordonT. F., PrakkenH., WaltonD. The Carneades model of argument and burden of proof. Artificial Intelligence 10(15) (2007) 875{896. VIII. GrenzS.J. The social god and the relational self: A Triad theology of the imago Dei. Westminster: John Knox Press, 2001. IX. HermansH.J. M.On the integration of nomothetic and idiographic research methods in the study of personal meaning.Journal of Personality 56(4) (1988) 785{812. X. JamiesonK. G., NowakR. Active ranking using pairwise comparisons.Advances in Neural Information Processing Systems (2011) 2240{2248. XI. JongsmaC.Poythress’s triad logic: a review essay. Pro Rege 42(4) (2014) 6{15. XII. KärkkäinenV.M. Trinity and Religious Pluralism: The Doctrine of the Trinity in Christian Theology of Religions. London: Routledge, 2017. XIII. KudzhS. A., TsvetkovV.Ya. Triadic systems. Russian Technology Magazine 7(6) (2019) 74{882. XIV. NelsonK.E.Some observations from the perspective of the rare event cognitive comparison theory of language acquisition.Children’s Language 6 (1987) 289{331. XV. NiskanenA., WallnerJ., JärvisaloM.Synthesizing argumentation frameworks from examples. Journal of Artificial Intelligence Research 66 (2019) 503{554. XVI. PührerJ.Realizability of three-valued semantics for abstract dialectical frameworks.Artificial Intelligence 278 (2020) 103{198. XVII. SwansonG.Frameworks for comparative research: structural anthropology and the theory of action. In: Vallier, Ivan (Ed.). Comparative methods in sociology: essays on trends and applications.Berkeley: University of California Press, 1971 141{202. XVIII. TsvetkovV.Ya.Worldview model as the result of education.World Applied Sciences Journal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. View | Download DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER". JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES spl10, n.º 1 (28 de junho de 2020). http://dx.doi.org/10.26782/jmcms.spl.10/2020.06.00048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia