Artigos de revistas sobre o tema "Expanding turbulent flames"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Expanding turbulent flames".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yang, Sheng, Abhishek Saha, Zirui Liu e Chung K. Law. "Role of Darrieus–Landau instability in propagation of expanding turbulent flames". Journal of Fluid Mechanics 850 (10 de julho de 2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.
Texto completo da fonteZhao, Haoran, Chunmiao Yuan, Gang Li e Fuchao Tian. "The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas". Energies 17, n.º 23 (28 de novembro de 2024): 5997. http://dx.doi.org/10.3390/en17235997.
Texto completo da fonteSaha, Abhishek, Swetaprovo Chaudhuri e Chung K. Law. "Flame surface statistics of constant-pressure turbulent expanding premixed flames". Physics of Fluids 26, n.º 4 (abril de 2014): 045109. http://dx.doi.org/10.1063/1.4871021.
Texto completo da fonteAhmed, I., e N. Swaminathan. "Simulation of Spherically Expanding Turbulent Premixed Flames". Combustion Science and Technology 185, n.º 10 (3 de outubro de 2013): 1509–40. http://dx.doi.org/10.1080/00102202.2013.808629.
Texto completo da fonteFries, Dan, Bradley A. Ochs, Abhishek Saha, Devesh Ranjan e Suresh Menon. "Flame speed characteristics of turbulent expanding flames in a rectangular channel". Combustion and Flame 199 (janeiro de 2019): 1–13. http://dx.doi.org/10.1016/j.combustflame.2018.10.008.
Texto completo da fonteUnni, Vishnu R., Chung K. Law e Abhishek Saha. "A cellular automata model for expanding turbulent flames". Chaos: An Interdisciplinary Journal of Nonlinear Science 30, n.º 11 (novembro de 2020): 113141. http://dx.doi.org/10.1063/5.0018947.
Texto completo da fonteLIPATNIKOV, A. N., e J. CHOMIAK. "Transient and Geometrical Effects in Expanding Turbulent Flames". Combustion Science and Technology 154, n.º 1 (maio de 2000): 75–117. http://dx.doi.org/10.1080/00102200008947273.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Zhijian Bian e Zuohua Huang. "Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames". International Journal of Hydrogen Energy 46, n.º 50 (julho de 2021): 25699–711. http://dx.doi.org/10.1016/j.ijhydene.2021.05.090.
Texto completo da fonteLiu, Zirui, Sheng Yang, Chung K. Law e Abhishek Saha. "Cellular instability in Le < 1 turbulent expanding flames". Proceedings of the Combustion Institute 37, n.º 2 (2019): 2611–18. http://dx.doi.org/10.1016/j.proci.2018.07.056.
Texto completo da fonteMukundakumar, Nithin, e Rob Bastiaans. "DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content". Energies 15, n.º 13 (28 de junho de 2022): 4749. http://dx.doi.org/10.3390/en15134749.
Texto completo da fonteLi, Hong-meng, Guo-xiu Li e Guo-peng Zhang. "Self-similar propagation and flame acceleration of hydrogen-rich syngas turbulent expanding flames". Fuel 350 (outubro de 2023): 128813. http://dx.doi.org/10.1016/j.fuel.2023.128813.
Texto completo da fonteOzel Erol, Gulcan, Josef Hasslberger, Markus Klein e Nilanjan Chakraborty. "Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists". Flow, Turbulence and Combustion 103, n.º 4 (12 de junho de 2019): 913–41. http://dx.doi.org/10.1007/s10494-019-00035-x.
Texto completo da fonteAlqallaf, Ahmad, Markus Klein e Nilanjan Chakraborty. "Effects of Lewis Number on the Evolution of Curvature in Spherically Expanding Turbulent Premixed Flames". Fluids 4, n.º 1 (16 de janeiro de 2019): 12. http://dx.doi.org/10.3390/fluids4010012.
Texto completo da fonteThévenin, D. "Three-dimensional direct simulations and structure of expanding turbulent methane flames". Proceedings of the Combustion Institute 30, n.º 1 (janeiro de 2005): 629–37. http://dx.doi.org/10.1016/j.proci.2004.08.037.
Texto completo da fonteGoulier, J., A. Comandini, F. Halter e N. Chaumeix. "Experimental study on turbulent expanding flames of lean hydrogen/air mixtures". Proceedings of the Combustion Institute 36, n.º 2 (2017): 2823–32. http://dx.doi.org/10.1016/j.proci.2016.06.074.
Texto completo da fonteCai, Xiao, Shouguo Su, Jinhua Wang, Hongchao Dai e Zuohua Huang. "Morphology and turbulent burning velocity of n-decane/air expanding flames at constant turbulent Reynolds numbers". Combustion and Flame 261 (março de 2024): 113283. http://dx.doi.org/10.1016/j.combustflame.2023.113283.
Texto completo da fontevan Oijen, J. A., G. R. A. Groot, R. J. M. Bastiaans e L. P. H. de Goey. "A flamelet analysis of the burning velocity of premixed turbulent expanding flames". Proceedings of the Combustion Institute 30, n.º 1 (janeiro de 2005): 657–64. http://dx.doi.org/10.1016/j.proci.2004.08.159.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu, Gang Li e Zuohua Huang. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames". Energy 283 (novembro de 2023): 129106. http://dx.doi.org/10.1016/j.energy.2023.129106.
Texto completo da fonteConcetti, Riccardo, Josef Hasslberger, Nilanjan Chakraborty e Markus Klein. "Effects of Water Mist on the Initial Evolution of Turbulent Premixed Hydrogen/Air Flame Kernels". Energies 17, n.º 18 (16 de setembro de 2024): 4632. http://dx.doi.org/10.3390/en17184632.
Texto completo da fonteHuang, Linyuan, Chonghua Lai, Sheng Huang, Yang Zuo e Quan Zhu. "Turbulent flame propagation of C10 hydrocarbons/air expanding flames: Possible unified correlation based on the Markstein number". Combustion and Flame 270 (dezembro de 2024): 113724. http://dx.doi.org/10.1016/j.combustflame.2024.113724.
Texto completo da fonteJiang, L. J., S. S. Shy, W. Y. Li, H. M. Huang e M. T. Nguyen. "High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames". Combustion and Flame 172 (outubro de 2016): 173–82. http://dx.doi.org/10.1016/j.combustflame.2016.07.021.
Texto completo da fonteBrequigny, P., F. Halter e C. Mounaïm-Rousselle. "Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel". Experimental Thermal and Fluid Science 73 (maio de 2016): 33–41. http://dx.doi.org/10.1016/j.expthermflusci.2015.08.021.
Texto completo da fonteBrequigny, Pierre, Charles Endouard, Christine Mounaïm-Rousselle e Fabrice Foucher. "An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques". Experimental Thermal and Fluid Science 95 (julho de 2018): 11–17. http://dx.doi.org/10.1016/j.expthermflusci.2017.12.018.
Texto completo da fonteWang, Shixing, Ayman M. Elbaz, Zhihua Wang e William L. Roberts. "The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures". Combustion and Flame 232 (outubro de 2021): 111521. http://dx.doi.org/10.1016/j.combustflame.2021.111521.
Texto completo da fonteJiang, L. J., S. S. Shy, W. Y. Li, H. M. Huang e M. T. Nguyen. "Corrigendum to “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames” [Combust. Flame 172 (2016) 173–182]". Combustion and Flame 227 (maio de 2021): 464. http://dx.doi.org/10.1016/j.combustflame.2021.01.029.
Texto completo da fonteHuang, Sheng, Ronghua Huang, Pei Zhou, Yu Zhang, Zhouping Yin e Zhaowen Wang. "Role of cellular wavelengths in self-acceleration of lean hydrogen-air expanding flames under turbulent conditions". International Journal of Hydrogen Energy 46, n.º 17 (março de 2021): 10494–505. http://dx.doi.org/10.1016/j.ijhydene.2020.12.124.
Texto completo da fonteZhao, Haoran, Gang Li, Jinhua Wang e Zuohua Huang. "Experimental study of H2/air turbulent expanding flames over wide equivalence ratios: Effects of molecular transport". Fuel 341 (junho de 2023): 127652. http://dx.doi.org/10.1016/j.fuel.2023.127652.
Texto completo da fonteWang, Shixing, Ayman M. Elbaz, Simone Hochgreb e William L. Roberts. "Local statistics of turbulent spherical expanding flames for NH3/CH4/H2/air measured by 10 kHz PIV". Proceedings of the Combustion Institute 40, n.º 1-4 (2024): 105251. http://dx.doi.org/10.1016/j.proci.2024.105251.
Texto completo da fonteCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Meng Zhang e Zuohua Huang. "Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number". Combustion and Flame 212 (fevereiro de 2020): 1–12. http://dx.doi.org/10.1016/j.combustflame.2019.10.019.
Texto completo da fonteFries, Dan, Bradley A. Ochs, Devesh Ranjan e Suresh Menon. "Hot-wire and PIV characterisation of a novel small-scale turbulent channel flow facility developed to study premixed expanding flames". Journal of Turbulence 18, n.º 11 (2 de agosto de 2017): 1081–103. http://dx.doi.org/10.1080/14685248.2017.1356466.
Texto completo da fonteOzel Erol, Gulcan, Josef Hasslberger, Markus Klein e Nilanjan Chakraborty. "A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity". Physics of Fluids 30, n.º 8 (agosto de 2018): 086104. http://dx.doi.org/10.1063/1.5045487.
Texto completo da fonteWu, Fujia, Abhishek Saha, Swetaprovo Chaudhuri e Chung K. Law. "Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction". Proceedings of the Combustion Institute 35, n.º 2 (2015): 1501–8. http://dx.doi.org/10.1016/j.proci.2014.07.070.
Texto completo da fonteChaudhuri, Swetaprovo, Abhishek Saha e Chung K. Law. "On flame–turbulence interaction in constant-pressure expanding flames". Proceedings of the Combustion Institute 35, n.º 2 (2015): 1331–39. http://dx.doi.org/10.1016/j.proci.2014.07.038.
Texto completo da fonteMORVAN, D., B. PORTERIE, M. LARINI e J. C. LORAUD. "Behaviour of a Methane/Air Turbulent Diffusion Flame Expanding from a Porous Burner". International Journal of Computational Fluid Dynamics 11, n.º 3-4 (janeiro de 1999): 313–24. http://dx.doi.org/10.1080/10618569908940883.
Texto completo da fonteZhang, Guo-Peng, Guo-Xiu Li, Hong-Meng Li e Jia-Cheng Lv. "Experimental Study of the Flame Structural Characteristics and Self-Similar Propagation of Syngas and Air Turbulent Expanding Premixed Flame". Journal of Energy Engineering 147, n.º 2 (abril de 2021): 04020090. http://dx.doi.org/10.1061/(asce)ey.1943-7897.0000742.
Texto completo da fonteZhang, Guo-Peng, Guo-Xiu Li, Hong-Meng Li, Yan-Huan Jiang e Jia-Cheng Lv. "Experimental investigation on the self-acceleration of 10%H2/90%CO/air turbulent expanding premixed flame". International Journal of Hydrogen Energy 44, n.º 44 (setembro de 2019): 24321–30. http://dx.doi.org/10.1016/j.ijhydene.2019.07.154.
Texto completo da fonteCiccarelli, G. "Explosion propagation in inert porous media". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, n.º 1960 (13 de fevereiro de 2012): 647–67. http://dx.doi.org/10.1098/rsta.2011.0346.
Texto completo da fonteGostintsev, Yu A., V. E. Fortov e Yu V. Shatskikh. "Self-Similar Propagation Law and Fractal Structure of the Surface of a Free Expanding Turbulent Spherical Flame". Doklady Physical Chemistry 397, n.º 1-3 (julho de 2004): 141–44. http://dx.doi.org/10.1023/b:dopc.0000035399.90845.db.
Texto completo da fonteTang, Bofeng, Haihong Che, Gary P. Zank e Vladimir I. Kolobov. "Suprathermal Electron Transport and Electron Beam Formation in the Solar Corona". Astrophysical Journal 954, n.º 1 (22 de agosto de 2023): 43. http://dx.doi.org/10.3847/1538-4357/ace7be.
Texto completo da fonteHelling, Tobias, Florian Reischl, Andreas Rosin, Thorsten Gerdes e Walter Krenkel. "Atomization of Borosilicate Glass Melts for the Fabrication of Hollow Glass Microspheres". Processes 11, n.º 9 (26 de agosto de 2023): 2559. http://dx.doi.org/10.3390/pr11092559.
Texto completo da fonteVinod, Aditya, Tejas Kulkarni e Fabrizio Bisetti. "Macroscopic View of Reynolds Scaling and Stretch Effects in Spherical Turbulent Premixed Flames". AIAA Journal, 18 de agosto de 2023, 1–11. http://dx.doi.org/10.2514/1.j062239.
Texto completo da fonteChaudhuri, Swetaprovo, Fujia Wu, Delin Zhu e Chung K. Law. "Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames". Physical Review Letters 108, n.º 4 (27 de janeiro de 2012). http://dx.doi.org/10.1103/physrevlett.108.044503.
Texto completo da fonte"Observations on the effect of centrifugal fields and the structure of turbulent flames". Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 431, n.º 1883 (8 de dezembro de 1990): 389–401. http://dx.doi.org/10.1098/rspa.1990.0139.
Texto completo da fonteKutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong Hilares e Eirik Æs⊘y. "Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses". Journal of Engineering for Gas Turbines and Power, 3 de agosto de 2021. http://dx.doi.org/10.1115/1.4051989.
Texto completo da fonteBechtold, John K., Gautham Krishnan e Moshe Matalon. "Hydrodynamic theory of premixed flames propagating in closed vessels: flame speed and Markstein lengths". Journal of Fluid Mechanics 998 (4 de novembro de 2024). http://dx.doi.org/10.1017/jfm.2024.919.
Texto completo da fonteChaudhuri, Swetaprovo, Fujia Wu e Chung K. Law. "Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations". Physical Review E 88, n.º 3 (9 de setembro de 2013). http://dx.doi.org/10.1103/physreve.88.033005.
Texto completo da fonteCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Zhongshan Li e Zuohua Huang. "Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames". Proceedings of the Combustion Institute, setembro de 2020. http://dx.doi.org/10.1016/j.proci.2020.06.247.
Texto completo da fonteAkkerman, V’yacheslav, Swetaprovo Chaudhuri e Chung K. Law. "Accelerative propagation and explosion triggering by expanding turbulent premixed flames". Physical Review E 87, n.º 2 (13 de fevereiro de 2013). http://dx.doi.org/10.1103/physreve.87.023008.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu e Zuohua Huang. "On Accelerative Propagation of Premixed Hydrogen/Air Laminar and Turbulent Expanding Flames". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4183159.
Texto completo da fonteCai, Xiao, Limin Su, Shouguo Su, Jinhua Wang, Marcus Aldén, Zhongshan Li e Zuohua Huang. "Propagation and Burning Velocity of Iron-Methane-Oxygen-Nitrogen Turbulent Expanding Flames". SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4393671.
Texto completo da fonte