Artigos de revistas sobre o tema "Expanding laminar flames"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Expanding laminar flames".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Tran, Vu Manh. "USING EXPANDING SPHERICAL FLAMES METHOD TO MEASURE THE UNSTRETCHED LAMINAR BURNING VELOCITIES OF LPG-AIR MIXTURES". Science and Technology Development Journal 12, n.º 8 (28 de abril de 2009): 5–14. http://dx.doi.org/10.32508/stdj.v12i8.2270.
Texto completo da fonteYousif, Alaeldeen Altag, e Shaharin Anwar Sulaiman. "Experimental Study on Laminar Flame Speeds and Markstein Length of Methane-Air Mixtures at Atmospheric Conditions". Applied Mechanics and Materials 699 (novembro de 2014): 714–19. http://dx.doi.org/10.4028/www.scientific.net/amm.699.714.
Texto completo da fonteJOMAAS, G., C. K. LAW e J. K. BECHTOLD. "On transition to cellularity in expanding spherical flames". Journal of Fluid Mechanics 583 (4 de julho de 2007): 1–26. http://dx.doi.org/10.1017/s0022112007005885.
Texto completo da fonteZhao, Haoran, Chunmiao Yuan, Gang Li e Fuchao Tian. "The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas". Energies 17, n.º 23 (28 de novembro de 2024): 5997. http://dx.doi.org/10.3390/en17235997.
Texto completo da fonteHuo, Jialong, Sheng Yang, Zhuyin Ren, Delin Zhu e Chung K. Law. "Uncertainty reduction in laminar flame speed extrapolation for expanding spherical flames". Combustion and Flame 189 (março de 2018): 155–62. http://dx.doi.org/10.1016/j.combustflame.2017.10.032.
Texto completo da fonteWu, Fujia, Wenkai Liang, Zheng Chen, Yiguang Ju e Chung K. Law. "Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames". Proceedings of the Combustion Institute 35, n.º 1 (2015): 663–70. http://dx.doi.org/10.1016/j.proci.2014.05.065.
Texto completo da fonteВолодин, В. В., В. В. Голуб e А. Е. Ельянов. "Влияние начальных условий на скорость фронта ламинарного пламени в газовых смесях". Журнал технической физики 91, n.º 2 (2021): 247. http://dx.doi.org/10.21883/jtf.2021.02.50358.215-20.
Texto completo da fonteShu, Tao, Yuan Xue, Wenkai Liang e Zhuyin Ren. "Extrapolations of laminar flame speeds from expanding spherical flames based on the finite-structure stretched flames". Combustion and Flame 226 (abril de 2021): 445–54. http://dx.doi.org/10.1016/j.combustflame.2020.12.037.
Texto completo da fonteYang, Sheng, Abhishek Saha, Zirui Liu e Chung K. Law. "Role of Darrieus–Landau instability in propagation of expanding turbulent flames". Journal of Fluid Mechanics 850 (10 de julho de 2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.
Texto completo da fonteLiao, S. Y., D. L. Zhong, C. Yang, X. B. Pan, C. Yuan e Q. Cheng. "The Temperature and Pressure Dependencies of Propagation Characteris-tics for Premixed Laminar Ethanol-Air Flames". Open Civil Engineering Journal 6, n.º 1 (10 de agosto de 2012): 55–64. http://dx.doi.org/10.2174/1874149501206010055.
Texto completo da fonteKelley, A. P., e C. K. Law. "Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames". Combustion and Flame 156, n.º 9 (setembro de 2009): 1844–51. http://dx.doi.org/10.1016/j.combustflame.2009.04.004.
Texto completo da fonteYang, Sheng, Abhishek Saha, Fujia Wu e Chung K. Law. "Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities". Combustion and Flame 171 (setembro de 2016): 112–18. http://dx.doi.org/10.1016/j.combustflame.2016.05.017.
Texto completo da fonteShu, Tao, Yuan Xue, Zijun Zhou e Zhuyin Ren. "An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames". Fuel 290 (abril de 2021): 120003. http://dx.doi.org/10.1016/j.fuel.2020.120003.
Texto completo da fonteZhang, Yakun, Stephanie A. Coronel e Rémy Mével. "Numerical study of synthetic spherically expanding flames for optimization of laminar flame speed experiments". Fuel 310 (fevereiro de 2022): 122367. http://dx.doi.org/10.1016/j.fuel.2021.122367.
Texto completo da fonteHuo, Jialong, Abhishek Saha, Zhuyin Ren e Chung K. Law. "Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames". Combustion and Flame 194 (agosto de 2018): 419–25. http://dx.doi.org/10.1016/j.combustflame.2018.05.025.
Texto completo da fonteAnggono, Willyanto, I. N. G. Wardana, M. Lawes, K. J. Hughes, Slamet Wahyudi e Nurkholis Hamidi. "Laminar Burning Velocity and Flammability Characteristics of Biogas in Spark Ignited Premix Combustion at Reduced Pressure". Applied Mechanics and Materials 376 (agosto de 2013): 79–85. http://dx.doi.org/10.4028/www.scientific.net/amm.376.79.
Texto completo da fonteKarpov, Vladimir P., Andrei N. Lipatnikov e Piotr Wolanski. "Finding the markstein number using the measurements of expanding spherical laminar flames". Combustion and Flame 109, n.º 3 (maio de 1997): 436–48. http://dx.doi.org/10.1016/s0010-2180(96)00166-6.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu, Gang Li e Zuohua Huang. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames". Energy 283 (novembro de 2023): 129106. http://dx.doi.org/10.1016/j.energy.2023.129106.
Texto completo da fonteDuva, Berk Can, Lauren Elizabeth Chance e Elisa Toulson. "The critical lower radius limit approach for laminar flame speed measurement from spherically expanding stretched flames". Experimental Thermal and Fluid Science 121 (fevereiro de 2021): 110284. http://dx.doi.org/10.1016/j.expthermflusci.2020.110284.
Texto completo da fonteJayachandran, Jagannath, Runhua Zhao e Fokion N. Egolfopoulos. "Determination of laminar flame speeds using stagnation and spherically expanding flames: Molecular transport and radiation effects". Combustion and Flame 161, n.º 9 (setembro de 2014): 2305–16. http://dx.doi.org/10.1016/j.combustflame.2014.03.009.
Texto completo da fonteHaq, M. Z. "Correlations for the Onset of Instabilities of Spherical Laminar Premixed Flames". Journal of Heat Transfer 127, n.º 12 (25 de janeiro de 2005): 1410–15. http://dx.doi.org/10.1115/1.2098867.
Texto completo da fonteMovaghar, Ashkan, Robert Lawson e Fokion N. Egolfopoulos. "Confined spherically expanding flame method for measuring laminar flame speeds: Revisiting the assumptions and application to C1C4 hydrocarbon flames". Combustion and Flame 212 (fevereiro de 2020): 79–92. http://dx.doi.org/10.1016/j.combustflame.2019.10.023.
Texto completo da fonteBerger, Lukas, Raik Hesse, Konstantin Kleinheinz, Michael J. Hegetschweiler, Antonio Attili, Joachim Beeckmann, Gregory T. Linteris e Heinz Pitsch. "A DNS study of the impact of gravity on spherically expanding laminar premixed flames". Combustion and Flame 216 (junho de 2020): 412–25. http://dx.doi.org/10.1016/j.combustflame.2020.01.036.
Texto completo da fonteMoccia, V., J. D’Alessio e N. Rispoli. "Inferring laminar burning properties from spherical expanding flames: the pitfalls of an established approach". Journal of Physics: Conference Series 1589 (julho de 2020): 012015. http://dx.doi.org/10.1088/1742-6596/1589/1/012015.
Texto completo da fonteTurner, Mattias A., Tyler T. Paschal, Pradeep Parajuli, Waruna D. Kulatilaka e Eric L. Petersen. "Application of high-speed, species-specific chemiluminescence imaging for laminar flame speed and Markstein length measurements in spherically expanding flames". Experimental Thermal and Fluid Science 129 (novembro de 2021): 110477. http://dx.doi.org/10.1016/j.expthermflusci.2021.110477.
Texto completo da fonteZhang, Yakun, Marine Jeanson, Rémy Mével, Zheng Chen e Nabiha Chaumeix. "Tailored mixture properties for accurate laminar flame speed measurement from spherically expanding flames: Application to H2/O2/N2/He mixtures". Combustion and Flame 231 (setembro de 2021): 111487. http://dx.doi.org/10.1016/j.combustflame.2021.111487.
Texto completo da fonteLipatnikov, Andrei N., Shenqyang S. Shy e Wun-yi Li. "Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths". Combustion and Flame 162, n.º 7 (julho de 2015): 2840–54. http://dx.doi.org/10.1016/j.combustflame.2015.04.003.
Texto completo da fonteJayachandran, Jagannath, Alexandre Lefebvre, Runhua Zhao, Fabien Halter, Emilien Varea, Bruno Renou e Fokion N. Egolfopoulos. "A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations". Proceedings of the Combustion Institute 35, n.º 1 (2015): 695–702. http://dx.doi.org/10.1016/j.proci.2014.05.031.
Texto completo da fonteMoghaddas, Ali, Kian Eisazadeh-Far e Hameed Metghalchi. "Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures". Combustion and Flame 159, n.º 4 (abril de 2012): 1437–43. http://dx.doi.org/10.1016/j.combustflame.2011.12.005.
Texto completo da fonteNawaz, Behlol, Md Nayer Nasim, Shubhra Kanti Das, Joshua Landis, Amina SubLaban, Juan Pablo Trelles, Dimitris Assanis, Noah Van Dam e J. Hunter Mack. "Combustion characteristics and emissions of nitrogen oxides (NO, NO2, N2O) from spherically expanding laminar flames of ammonia–hydrogen blends". International Journal of Hydrogen Energy 65 (maio de 2024): 164–76. http://dx.doi.org/10.1016/j.ijhydene.2024.03.366.
Texto completo da fonteConcetti, Riccardo, Josef Hasslberger e Markus Klein. "Direct numerical simulations with multi-step chemistry of liquid water interaction with laminar spherically expanding premixed hydrogen/air flames". International Journal of Hydrogen Energy 115 (abril de 2025): 10–23. https://doi.org/10.1016/j.ijhydene.2025.02.286.
Texto completo da fonteKhan, A. R., S. Anbusaravanan, Lokesh Kalathi, Ratnakishore Velamati e C. Prathap. "Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames". Fuel 196 (maio de 2017): 225–32. http://dx.doi.org/10.1016/j.fuel.2017.01.086.
Texto completo da fonteXiouris, Christodoulos, Tailai Ye, Jagannath Jayachandran e Fokion N. Egolfopoulos. "Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments". Combustion and Flame 163 (janeiro de 2016): 270–83. http://dx.doi.org/10.1016/j.combustflame.2015.10.003.
Texto completo da fonteEisazadeh-Far, Kian, Ali Moghaddas, Faranak Rahim e Hameed Metghalchi. "Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model". Entropy 12, n.º 12 (21 de dezembro de 2010): 2485–96. http://dx.doi.org/10.3390/e12122485.
Texto completo da fonteHelling, Tobias, Florian Reischl, Andreas Rosin, Thorsten Gerdes e Walter Krenkel. "Atomization of Borosilicate Glass Melts for the Fabrication of Hollow Glass Microspheres". Processes 11, n.º 9 (26 de agosto de 2023): 2559. http://dx.doi.org/10.3390/pr11092559.
Texto completo da fonteSawant, N., B. Dorschner e I. V. Karlin. "A lattice Boltzmann model for reactive mixtures". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2208 (30 de agosto de 2021): 20200402. http://dx.doi.org/10.1098/rsta.2020.0402.
Texto completo da fonteTindemans, Irma, Maria E. Joosse e Janneke N. Samsom. "Dissecting the Heterogeneity in T-Cell Mediated Inflammation in IBD". Cells 9, n.º 1 (2 de janeiro de 2020): 110. http://dx.doi.org/10.3390/cells9010110.
Texto completo da fonteAdamski, Robert, Dorota Siuta, Bożena Kukfisz, Michał Frydrysiak e Mirosława Prochoń. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco". Energies 14, n.º 18 (18 de setembro de 2021): 5927. http://dx.doi.org/10.3390/en14185927.
Texto completo da fonteRokni, Emad, Ali Moghaddas, Omid Askari e Hameed Metghalchi. "Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures". Journal of Energy Resources Technology 137, n.º 1 (3 de setembro de 2014). http://dx.doi.org/10.1115/1.4028363.
Texto completo da fonteLi, Hong-Meng, Guo-Xiu Li, Zuo-Yu Sun, Zi-Hang Zhou, Yuan Li e Ye Yuan. "Fundamental Combustion Characteristics of Lean and Stoichiometric Hydrogen Laminar Premixed Flames Diluted With Nitrogen or Carbon Dioxide". Journal of Engineering for Gas Turbines and Power 138, n.º 11 (24 de maio de 2016). http://dx.doi.org/10.1115/1.4032315.
Texto completo da fonteCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Zhongshan Li e Zuohua Huang. "Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames". Proceedings of the Combustion Institute, setembro de 2020. http://dx.doi.org/10.1016/j.proci.2020.06.247.
Texto completo da fonteBechtold, John K., Gautham Krishnan e Moshe Matalon. "Hydrodynamic theory of premixed flames propagating in closed vessels: flame speed and Markstein lengths". Journal of Fluid Mechanics 998 (4 de novembro de 2024). http://dx.doi.org/10.1017/jfm.2024.919.
Texto completo da fonteLiu, Zirui, Vishnu R. Unni, Swetaprovo Chaudhuri, Chung K. Law e Abhishek Saha. "Local statistics of laminar expanding flames subjected to Darrieus–Landau instability". Proceedings of the Combustion Institute, agosto de 2020. http://dx.doi.org/10.1016/j.proci.2020.06.118.
Texto completo da fonteYin, Geyuan, Erjiang Hu, Xiaotian Li, Xin Lv e Zuohua Huang. "Laminar Flame Instability of n-Hexane, n-Octane, and n-Decane in Spherical Expanding Flames". Journal of Thermal Science, 11 de janeiro de 2024. http://dx.doi.org/10.1007/s11630-024-1844-0.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Xiao Liu e Zuohua Huang. "On Accelerative Propagation of Premixed Hydrogen/Air Laminar and Turbulent Expanding Flames". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4183159.
Texto completo da fonteHuo, Jialong, Abhishek Saha, Tao Shu, Zhuyin Ren e Chung K. Law. "Self-acceleration and global pulsation in expanding laminar H2−O2−N2 flames". Physical Review Fluids 4, n.º 4 (16 de abril de 2019). http://dx.doi.org/10.1103/physrevfluids.4.043201.
Texto completo da fonteDuva, Berk, Yen-Cheng Wang, Lauren Chance e Elisa Toulson. "Laminar Flame Characteristics of Sequential Two-Stage Combustion of Premixed Methane/Air Flames". Journal of Engineering for Gas Turbines and Power, 15 de setembro de 2020. http://dx.doi.org/10.1115/1.4048450.
Texto completo da fonteKutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong Hilares e Eirik Æs⊘y. "Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses". Journal of Engineering for Gas Turbines and Power, 3 de agosto de 2021. http://dx.doi.org/10.1115/1.4051989.
Texto completo da fonteTurner, Mattias, e Eric Petersen. "High-Pressure Laminar Flame Speeds and Markstein Lengths of Syngas Flames Diluted in Carbon Dioxide and Helium". Journal of Engineering for Gas Turbines and Power, 27 de setembro de 2022. http://dx.doi.org/10.1115/1.4055796.
Texto completo da fonteAmerighi, Matteo, Giada Senatori, Antonio Andreini, Thierry Schuller, Tarik Yahou e James Dawson. "Complete Dynamics from Ignition to Stabilization of a Lean Hydrogen Flame with Thickened Flame Model". Journal of Engineering for Gas Turbines and Power, 19 de setembro de 2024, 1–13. http://dx.doi.org/10.1115/1.4066590.
Texto completo da fonte