Artigos de revistas sobre o tema "Exogenous fatty acid"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Exogenous fatty acid".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Song, Jae-Eun, Tiago C. Alves, Bernardo Stutz, Matija Šestan-Peša, Nicole Kilian, Sungho Jin, Sabrina Diano, Richard G. Kibbey e Tamas L. Horvath. "Mitochondrial Fission Governed by Drp1 Regulates Exogenous Fatty Acid Usage and Storage in Hela Cells". Metabolites 11, n.º 5 (18 de maio de 2021): 322. http://dx.doi.org/10.3390/metabo11050322.
Texto completo da fontePeters-Golden, M., e C. Shelly. "Inhibitory effect of exogenous arachidonic acid on alveolar macrophage 5-lipoxygenase metabolism. Role of ATP depletion." Journal of Immunology 140, n.º 6 (15 de março de 1988): 1958–66. http://dx.doi.org/10.4049/jimmunol.140.6.1958.
Texto completo da fonteDesfougères, Thomas, Thierry Ferreira, Thierry Bergès e Matthieu Régnacq. "SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion". Biochemical Journal 409, n.º 1 (11 de dezembro de 2007): 299–309. http://dx.doi.org/10.1042/bj20071028.
Texto completo da fonteYao, Jiangwei, e Charles O. Rock. "Exogenous fatty acid metabolism in bacteria". Biochimie 141 (outubro de 2017): 30–39. http://dx.doi.org/10.1016/j.biochi.2017.06.015.
Texto completo da fonteMahajan, Sandeep, e G. K. Khuller. "Cerulenin inhibition of lipid synthesis and its reversal by exogenous fatty acids in Mycobacterium smegmatis ATCC 607". Canadian Journal of Biochemistry and Cell Biology 63, n.º 2 (1 de fevereiro de 1985): 85–90. http://dx.doi.org/10.1139/o85-012.
Texto completo da fonteSaito, Holly E., John R. Harp e Elizabeth M. Fozo. "Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents". Applied and Environmental Microbiology 80, n.º 20 (15 de agosto de 2014): 6527–38. http://dx.doi.org/10.1128/aem.02044-14.
Texto completo da fonteGibbons, G. F., e F. J. Burnham. "Effect of nutritional state on the utilization of fatty acids for hepatitic triacylglycerol synthesis and secretion as very-low-density lipoprotein". Biochemical Journal 275, n.º 1 (1 de abril de 1991): 87–92. http://dx.doi.org/10.1042/bj2750087.
Texto completo da fonteBlack, Paul N., e Concetta C. DiRusso. "Transmembrane Movement of Exogenous Long-Chain Fatty Acids: Proteins, Enzymes, and Vectorial Esterification". Microbiology and Molecular Biology Reviews 67, n.º 3 (setembro de 2003): 454–72. http://dx.doi.org/10.1128/mmbr.67.3.454-472.2003.
Texto completo da fonteYamasaki, Tomohiro, Lumin Zhang, Tyrone Dowdy, Adrian Lita, Kazuhiko Kurozumi e Mioara Larion. "TMET-15. THE COMBINATIONAL EFFECT OF INHIBITOR FOR A FATTY ACID DESATURASE AND A FATTY ACID TRANSPORTER ON GLIOMA GROWTH". Neuro-Oncology 25, Supplement_5 (1 de novembro de 2023): v275—v276. http://dx.doi.org/10.1093/neuonc/noad179.1059.
Texto completo da fontePuteri Afiqah Abdul Wahab e Aziz Ahmad. "Effects of Exogenous Arachidonic Acid on Morphological Traits and Fatty Acid Profile of Rice (Oryza sativa L.) Grown on Saline Soil". Universiti Malaysia Terengganu Journal of Undergraduate Research 1, n.º 3 (31 de julho de 2019): 68–78. http://dx.doi.org/10.46754/umtjur.v1i3.80.
Texto completo da fonteWetzels, J. F., X. Wang, P. E. Gengaro, R. A. Nemenoff, T. J. Burke e R. W. Schrier. "Glycine protection against hypoxic but not phospholipase A2-induced injury in rat proximal tubules". American Journal of Physiology-Renal Physiology 264, n.º 1 (1 de janeiro de 1993): F94—F99. http://dx.doi.org/10.1152/ajprenal.1993.264.1.f94.
Texto completo da fonteCeddia, RB, e R. Curi. "Leptin controls the fate of fatty acids in isolated rat white adipocytes". Journal of Endocrinology 175, n.º 3 (1 de dezembro de 2002): 735–44. http://dx.doi.org/10.1677/joe.0.1750735.
Texto completo da fonteGreen, Charlotte J., Deborah Johnson, Harsh D. Amin, Pamela Sivathondan, Michael A. Silva, Lai Mun Wang, Lara Stevanato et al. "Characterization of lipid metabolism in a novel immortalized human hepatocyte cell line". American Journal of Physiology-Endocrinology and Metabolism 309, n.º 6 (15 de setembro de 2015): E511—E522. http://dx.doi.org/10.1152/ajpendo.00594.2014.
Texto completo da fonteYazawa, Hisashi, Hitoshi Iwahashi, Yasushi Kamisaka, Kazuyoshi Kimura, Tsunehiro Aki, Kazuhisa Ono e Hiroshi Uemura. "Heterologous Production of Dihomo-γ-Linolenic Acid in Saccharomyces cerevisiae". Applied and Environmental Microbiology 73, n.º 21 (14 de setembro de 2007): 6965–71. http://dx.doi.org/10.1128/aem.01008-07.
Texto completo da fonteWu, Wei-Jia, Ying-Ning Zou, Zhi-Yan Xiao, Fang-Ling Wang, Abeer Hashem, Elsayed Fathi Abd_Allah e Qiang-Sheng Wu. "Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin". Horticulturae 10, n.º 6 (2 de junho de 2024): 580. http://dx.doi.org/10.3390/horticulturae10060580.
Texto completo da fonteLongnus, Sarah L., Richard B. Wambolt, Rick L. Barr, Gary D. Lopaschuk e Michael F. Allard. "Regulation of myocardial fatty acid oxidation by substrate supply". American Journal of Physiology-Heart and Circulatory Physiology 281, n.º 4 (1 de outubro de 2001): H1561—H1567. http://dx.doi.org/10.1152/ajpheart.2001.281.4.h1561.
Texto completo da fonteCropp, T. Ashton, Adam A. Smogowicz, Edmund W. Hafner, Claudio D. Denoya, Hamish AI McArthur e Kevin A. Reynolds. "Fatty-acid biosynthesis in a branched-chain α-keto acid dehydrogenase mutant ofStreptomyces avermitilis". Canadian Journal of Microbiology 46, n.º 6 (1 de junho de 2000): 506–14. http://dx.doi.org/10.1139/w00-028.
Texto completo da fonteWendel, Angela A., Daniel E. Cooper, Olga R. Ilkayeva, Deborah M. Muoio e Rosalind A. Coleman. "Glycerol-3-phosphate Acyltransferase (GPAT)-1, but Not GPAT4, Incorporates Newly Synthesized Fatty Acids into Triacylglycerol and Diminishes Fatty Acid Oxidation". Journal of Biological Chemistry 288, n.º 38 (1 de agosto de 2013): 27299–306. http://dx.doi.org/10.1074/jbc.m113.485219.
Texto completo da fontePech-Canul, Ángel, Joaquina Nogales, Alfonso Miranda-Molina, Laura Álvarez, Otto Geiger, María José Soto e Isabel M. López-Lara. "FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids". Journal of Bacteriology 193, n.º 22 (16 de setembro de 2011): 6295–304. http://dx.doi.org/10.1128/jb.05450-11.
Texto completo da fonteYao, Jiangwei, Megan E. Ericson, Matthew W. Frank e Charles O. Rock. "Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes". Infection and Immunity 84, n.º 12 (10 de outubro de 2016): 3597–607. http://dx.doi.org/10.1128/iai.00647-16.
Texto completo da fonteTitov, Vladimir Nicolaevich, e Vladimir Pavlovich Shirinsky. "Insulin resistance: the conflict between biological settings of energy metabolism and human lifestyle (a glance at the problem from evolutionary viewpoint)". Diabetes mellitus 19, n.º 4 (31 de agosto de 2016): 286–94. http://dx.doi.org/10.14341/dm7959.
Texto completo da fonteChattopadhyay, Panchanon, Santu Kumar Banerjee, Kalyani Sen e Parul Chakrabarti. "Lipid profiles of conidia of Aspergillus niger and a fatty acid auxotroph". Canadian Journal of Microbiology 33, n.º 12 (1 de dezembro de 1987): 1116–20. http://dx.doi.org/10.1139/m87-195.
Texto completo da fonteLiang, Zhenye, Zongzheng Jiang, Sen Wu, Yujia Zhai, Shuqi You e Chang Xu. "Exogenous Fatty Acids Remodel the Muscle Fatty Acids Composition of the GIFT Tilapia (Oreochromis niloticus)". Aquaculture Research 2024 (14 de março de 2024): 1–13. http://dx.doi.org/10.1155/2024/2715178.
Texto completo da fonteKingry, Luke C., Jason E. Cummings, Kerry W. Brookman, Gopal R. Bommineni, Peter J. Tonge e Richard A. Slayden. "The Francisella tularensis FabI Enoyl-Acyl Carrier Protein Reductase Gene Is Essential to Bacterial Viability and Is Expressed during Infection". Journal of Bacteriology 195, n.º 2 (9 de novembro de 2012): 351–58. http://dx.doi.org/10.1128/jb.01957-12.
Texto completo da fonteRavi, Divya, Carmen del Genio, Haider Ghiasuddin e Arti Gaur. "FSMP-15. EVALUATING THE ROLE OF LONG-CHAIN FATTY ACID METABOLISM IN PROMOTING GLIOBLASTOMA GROWTH". Neuro-Oncology Advances 3, Supplement_1 (1 de março de 2021): i19. http://dx.doi.org/10.1093/noajnl/vdab024.079.
Texto completo da fonteChamberlin, M. E., e L. J. Mandel. "Substrate support of medullary thick ascending limb oxygen consumption". American Journal of Physiology-Renal Physiology 251, n.º 4 (1 de outubro de 1986): F758—F763. http://dx.doi.org/10.1152/ajprenal.1986.251.4.f758.
Texto completo da fonteZhu, Kun, Xiang Ding, Mudcharee Julotok e Brian J. Wilkinson. "Exogenous Isoleucine and Fatty Acid Shortening Ensure the High Content of Anteiso-C15:0 Fatty Acid Required for Low-Temperature Growth of Listeria monocytogenes". Applied and Environmental Microbiology 71, n.º 12 (dezembro de 2005): 8002–7. http://dx.doi.org/10.1128/aem.71.12.8002-8007.2005.
Texto completo da fonteJenkins, Julie K., e Polly D. Courtney. "Lactobacillusgrowth and membrane composition in the presence of linoleic or conjugated linoleic acid". Canadian Journal of Microbiology 49, n.º 1 (1 de janeiro de 2003): 51–57. http://dx.doi.org/10.1139/w03-003.
Texto completo da fonteSauro, V. S., e K. P. Strickland. "Changes in oleic acid oxidation and incorporation into lipids of differentiating L6 myoblasts cultured in normal or fatty acid-supplemented growth medium". Biochemical Journal 244, n.º 3 (15 de junho de 1987): 743–48. http://dx.doi.org/10.1042/bj2440743.
Texto completo da fonteHopp, J. F., e W. K. Palmer. "Electrical stimulation alters fatty acid metabolism in isolated skeletal muscle". Journal of Applied Physiology 68, n.º 6 (1 de junho de 1990): 2473–81. http://dx.doi.org/10.1152/jappl.1990.68.6.2473.
Texto completo da fonteWIGGINS, David, e Geoffrey F. GIBBONS. "Origin of hepatic very-low-density lipoprotein triacylglycerol: the contribution of cellular phospholipid". Biochemical Journal 320, n.º 2 (1 de dezembro de 1996): 673–79. http://dx.doi.org/10.1042/bj3200673.
Texto completo da fonteXu, Tao, Siddharth K. Tripathi, Qin Feng, Michael C. Lorenz, Marsha A. Wright, Melissa R. Jacob, Melanie M. Mask et al. "A Potent Plant-Derived Antifungal Acetylenic Acid Mediates Its Activity by Interfering with Fatty Acid Homeostasis". Antimicrobial Agents and Chemotherapy 56, n.º 6 (19 de março de 2012): 2894–907. http://dx.doi.org/10.1128/aac.05663-11.
Texto completo da fonteLiang, Xiaohan, Jianmin Cui, Xuke Yang, Ningbo Xia, Yaqiong Li, Junlong Zhao, Nishith Gupta e Bang Shen. "Acquisition of exogenous fatty acids renders apicoplast-based biosynthesis dispensable in tachyzoites of Toxoplasma". Journal of Biological Chemistry 295, n.º 22 (27 de abril de 2020): 7743–52. http://dx.doi.org/10.1074/jbc.ra120.013004.
Texto completo da fonteMcDonough, Virginia M., e Therese M. Roth. "Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe". Antonie van Leeuwenhoek 86, n.º 4 (2004): 349–54. http://dx.doi.org/10.1007/s10482-004-0515-0.
Texto completo da fonteMcDonough, Virginia M., e Therese M. Roth. "Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe". Antonie van Leeuwenhoek 86, n.º 4 (janeiro de 2005): 349–54. http://dx.doi.org/10.1007/s10482-005-0515-8.
Texto completo da fonteMaghfira, Lativa Lisya, László Stündl, Milán Fehér e Anis Asmediana. "Review on the fatty acid profile and free fatty acid of common carp (Cyprinus carpio)". Acta Agraria Debreceniensis, n.º 2 (1 de dezembro de 2023): 99–105. http://dx.doi.org/10.34101/actaagrar/2/13290.
Texto completo da fonteSubramanian, Chitra, Charles O. Rock e Yong-Mei Zhang. "DesT Coordinates the Expression of Anaerobic and Aerobic Pathways for Unsaturated Fatty Acid Biosynthesis in Pseudomonas aeruginosa". Journal of Bacteriology 192, n.º 1 (30 de outubro de 2009): 280–85. http://dx.doi.org/10.1128/jb.00404-09.
Texto completo da fonteKovalevskaya, N. P. "Effect of Auxin on Fatty Acid Composition and Activity of Acyl-Lipid Desaturases in Sprouts of Spring Wheat <i>Triticum aestivum</i> L." Биологические мембраны Журнал мембранной и клеточной биологии 40, n.º 1 (1 de janeiro de 2023): 71–80. http://dx.doi.org/10.31857/s0233475522060081.
Texto completo da fonteKoundouros, Nikos, e George Poulogiannis. "Reprogramming of fatty acid metabolism in cancer". British Journal of Cancer 122, n.º 1 (10 de dezembro de 2019): 4–22. http://dx.doi.org/10.1038/s41416-019-0650-z.
Texto completo da fonteForstermann, U., e B. Neufang. "Endothelium-dependent vasodilation by melittin: are lipoxygenase products involved?" American Journal of Physiology-Heart and Circulatory Physiology 249, n.º 1 (1 de julho de 1985): H14—H19. http://dx.doi.org/10.1152/ajpheart.1985.249.1.h14.
Texto completo da fonteBlack, P. N., e Q. Zhang. "Evidence that His110 of the protein FadL in the outer membrane of Escherichia coli is involved in the binding and uptake of long-chain fatty acids: possible role of this residue in carboxylate binding". Biochemical Journal 310, n.º 2 (1 de setembro de 1995): 389–94. http://dx.doi.org/10.1042/bj3100389.
Texto completo da fonteHarp, John R., Holly E. Saito, Allen K. Bourdon, Jinnethe Reyes, Cesar A. Arias, Shawn R. Campagna e Elizabeth M. Fozo. "Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR". Applied and Environmental Microbiology 82, n.º 14 (13 de maio de 2016): 4410–20. http://dx.doi.org/10.1128/aem.00933-16.
Texto completo da fonteByers, David M., e Zhiwei Shen. "Biochemical evidence against protein-mediated uptake of myristic acid in the bioluminescent marine bacteriumVibrio harveyi". Canadian Journal of Microbiology 48, n.º 10 (1 de outubro de 2002): 933–39. http://dx.doi.org/10.1139/w02-092.
Texto completo da fonteMalaisse, W. J., F. Malaisse-Lagae, A. Sener e C. Hellerström. "Participation of endogenous fatty acids in the secretory activity of the pancreatic B-cell". Biochemical Journal 227, n.º 3 (1 de maio de 1985): 995–1002. http://dx.doi.org/10.1042/bj2270995.
Texto completo da fonteDorea, J. R. R., e L. E. Armentano. "Effects of common dietary fatty acids on milk yield and concentrations of fat and fatty acids in dairy cattle". Animal Production Science 57, n.º 11 (2017): 2224. http://dx.doi.org/10.1071/an17335.
Texto completo da fonteWang, Ya-Di, Jiao-Yang Li, Yu Qin, Qiong Liu, Zhe-Zhen Liao e Xin-Hua Xiao. "Exogenous Hydrogen Sulfide Alleviates-Induced Intracellular Inflammation in HepG2 Cells". Experimental and Clinical Endocrinology & Diabetes 128, n.º 03 (17 de outubro de 2019): 137–43. http://dx.doi.org/10.1055/a-0999-0149.
Texto completo da fonteLabarthe, François, Maya Khairallah, Bertrand Bouchard, William C. Stanley e Christine Des Rosiers. "Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid". American Journal of Physiology-Heart and Circulatory Physiology 288, n.º 3 (março de 2005): H1425—H1436. http://dx.doi.org/10.1152/ajpheart.00722.2004.
Texto completo da fonteProbst, I., R. Spahr, C. Schweickhardt, D. H. Hunneman e H. M. Piper. "Carbohydrate and fatty acid metabolism of cultured adult cardiac myocytes". American Journal of Physiology-Heart and Circulatory Physiology 250, n.º 5 (1 de maio de 1986): H853—H860. http://dx.doi.org/10.1152/ajpheart.1986.250.5.h853.
Texto completo da fonteMartínez-Micaelo, N., N. González-Abuín, M. Pinent, A. Ardévol e M. Blay. "Dietary fatty acid composition is sensed by the NLRP3 inflammasome: omega-3 fatty acid (DHA) prevents NLRP3 activation in human macrophages". Food & Function 7, n.º 8 (2016): 3480–87. http://dx.doi.org/10.1039/c6fo00477f.
Texto completo da fonteChatham, John C., Zhi-Ping Gao e John R. Forder. "Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation". American Journal of Physiology-Endocrinology and Metabolism 277, n.º 2 (1 de agosto de 1999): E342—E351. http://dx.doi.org/10.1152/ajpendo.1999.277.2.e342.
Texto completo da fonte