Artigos de revistas sobre o tema "Exciton diffusion coefficient"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Exciton diffusion coefficient".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sotome, Hikaru. "(Invited) Comprehensive Analysis of Exciton Diffusion with Time-Resolved Fluorescence Spectroscopy, Anisotropy and Imaging". ECS Meeting Abstracts MA2024-01, n.º 13 (9 de agosto de 2024): 1065. http://dx.doi.org/10.1149/ma2024-01131065mtgabs.
Texto completo da fonteGlazov, M. M., Z. A. Iakovlev e S. Refaely-Abramson. "Phonon-induced exciton weak localization in two-dimensional semiconductors". Applied Physics Letters 121, n.º 19 (7 de novembro de 2022): 192106. http://dx.doi.org/10.1063/5.0122633.
Texto completo da fonteShibu, Abhishek, Camilla Middleton, Carly O. Kwiatkowski, Meesha Kaushal, Jonathan H. Gillen e Michael G. Walter. "Self-Assembly-Directed Exciton Diffusion in Solution-Processable Metalloporphyrin Thin Films". Molecules 27, n.º 1 (22 de dezembro de 2021): 35. http://dx.doi.org/10.3390/molecules27010035.
Texto completo da fonteOrtiz, Angy L., Graham S. Collier, Dawn M. Marin, Jennifer A. Kassel, Reynolds J. Ivins, Nicholas G. Grubich e Michael G. Walter. "The effects of heavy atoms on the exciton diffusion properties in photoactive thin films of tetrakis(4-carbomethoxyphenyl)porphyrins". Journal of Materials Chemistry C 3, n.º 6 (2015): 1243–49. http://dx.doi.org/10.1039/c4tc02232g.
Texto completo da fonteAchtstein, Alexander W., Sabrine Ayari, Sophia Helmrich, Michael T. Quick, Nina Owschimikow, Sihem Jaziri e Ulrike Woggon. "Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size". Nanoscale 12, n.º 46 (2020): 23521–31. http://dx.doi.org/10.1039/d0nr04745g.
Texto completo da fonteDonatini, Fabrice, e Julien Pernot. "Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation". Nanotechnology 29, n.º 10 (9 de março de 2018): 105703. http://dx.doi.org/10.1088/1361-6528/aaa638.
Texto completo da fonteMORI, K., M. YOKOYA, H. NISHIMURA, M. NAKAYAMA e H. ISHIBASHI. "SCINTILLATION MECHANISM OF Ce3+ DOPED Gd2SiO5". International Journal of Modern Physics B 15, n.º 28n30 (10 de dezembro de 2001): 3877–80. http://dx.doi.org/10.1142/s0217979201008895.
Texto completo da fonteLondi, Giacomo, Rishat Dilmurat, Gabriele D’Avino, Vincent Lemaur, Yoann Olivier e David Beljonne. "Comprehensive modelling study of singlet exciton diffusion in donor–acceptor dyads: when small changes in chemical structure matter". Physical Chemistry Chemical Physics 21, n.º 45 (2019): 25023–34. http://dx.doi.org/10.1039/c9cp05201a.
Texto completo da fonteNavozenko, O. M., V. M. Yashchuk, Yu P. Piryatinski, D. Gudeiko, A. P. Naumenko e Yu L. Slominskii. "The Peculiarities of Singlet Electronic Excitation Energy Transfer Processes in Alq3 Films". Ukrainian Journal of Physics 65, n.º 3 (26 de março de 2020): 196. http://dx.doi.org/10.15407/ujpe65.3.196.
Texto completo da fonteŠčajev, Patrik. "Excitation and temperature dependent exciton-carrier transport in CVD diamond: Diffusion coefficient, recombination lifetime and diffusion length". Physica B: Condensed Matter 510 (abril de 2017): 92–98. http://dx.doi.org/10.1016/j.physb.2017.01.021.
Texto completo da fonteYeboah, Douglas, e Jai Singh. "Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells". Journal of Electronic Materials 46, n.º 11 (19 de julho de 2017): 6451–60. http://dx.doi.org/10.1007/s11664-017-5679-2.
Texto completo da fonteMichaelis de Vasconcellos, Steffen, Robert Schmidt, Roberto Rosati, Samuel Brem, Raul Perea-Causín, Iris Niehues, Johannes Kern et al. "(Invited) Exciton Transport in Strained 2D Semiconductors". ECS Meeting Abstracts MA2023-02, n.º 34 (22 de dezembro de 2023): 1626. http://dx.doi.org/10.1149/ma2023-02341626mtgabs.
Texto completo da fonteMontilla, Francisco, Andrés F. Quintero-Jaime, Francisco Huerta e César Quijada. "Determination of exciton diffusion coefficient in conjugated polymer films: Novel method based on spectroelectrochemical techniques". Electrochimica Acta 387 (agosto de 2021): 138419. http://dx.doi.org/10.1016/j.electacta.2021.138419.
Texto completo da fonteLigthart, Arnout, Xander de Vries, Peter A. Bobbert e Reinder Coehoorn. "Single-layer method for quantifying the triplet exciton diffusion coefficient in disordered organic semiconductor materials". Organic Electronics 77 (fevereiro de 2020): 105510. http://dx.doi.org/10.1016/j.orgel.2019.105510.
Texto completo da fonteYao, Wendian, Dong Yang e Dehui Li. "(Poster Award - 2nd Place) Layer-Number Engineered Momentum-Indirect Interlayer Excitons with Large Spectral Tunability". ECS Meeting Abstracts MA2023-02, n.º 34 (22 de dezembro de 2023): 1642. http://dx.doi.org/10.1149/ma2023-02341642mtgabs.
Texto completo da fontePaulson, Bjorn, Yeonhee Shin, Akimitsu Okamoto, Yeon-Mok Oh, Jun Ki Kim e Chan-Gi Pack. "Poly(A)+ Sensing of Hybridization-Sensitive Fluorescent Oligonucleotide Probe Characterized by Fluorescence Correlation Methods". International Journal of Molecular Sciences 22, n.º 12 (16 de junho de 2021): 6433. http://dx.doi.org/10.3390/ijms22126433.
Texto completo da fonteIkyo, B. A., A. F. Ochai e A. Itodo. "Determination of Efficiency Parameters in tin Halide Perovskite Solar Cells". NIGERIAN ANNALS OF PURE AND APPLIED SCIENCES 1 (8 de março de 2019): 294–300. http://dx.doi.org/10.46912/napas.52.
Texto completo da fonteZelenin, Yu A., e T. A. Bilyi. "New hyperbolic statistics for the equilibrium distribution function of interacting electrons". Geofizicheskiy Zhurnal 44, n.º 6 (22 de fevereiro de 2023): 112–19. http://dx.doi.org/10.24028/gj.v44i6.273643.
Texto completo da fonteSneyd, Alexander J., Tomoya Fukui, David Paleček, Suryoday Prodhan, Isabella Wagner, Yifan Zhang, Jooyoung Sung et al. "Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization". Science Advances 7, n.º 32 (agosto de 2021): eabh4232. http://dx.doi.org/10.1126/sciadv.abh4232.
Texto completo da fonteWang, Kaijie, Ye Tian, Heng Jiang, Meng Chen e Shuangyan Xu. "Surface Treatment on Nickel Oxide to Enhance the Efficiency of Inverted Perovskite Solar Cells". International Journal of Photoenergy 2019 (4 de novembro de 2019): 1–7. http://dx.doi.org/10.1155/2019/4360816.
Texto completo da fonteSabelfeld, Karl, e Ivan Aksyuk. "Stochastic simulation of exciton transport in semiconductor heterostructures". Russian Journal of Numerical Analysis and Mathematical Modelling 39, n.º 3 (1 de junho de 2024): 143–56. http://dx.doi.org/10.1515/rnam-2024-0014.
Texto completo da fonteMoorthy, Vijai Meyyappan, e Viranjay M. Srivastava. "Device Modelling and Optimization of Nanomaterial-Based Planar Heterojunction Solar Cell (by Varying the Device Dimensions and Material Parameters)". Nanomaterials 12, n.º 17 (31 de agosto de 2022): 3031. http://dx.doi.org/10.3390/nano12173031.
Texto completo da fonteMangrulkar, Mayuribala, e Keith J. Stevenson. "The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells". Crystals 11, n.º 7 (13 de julho de 2021): 814. http://dx.doi.org/10.3390/cryst11070814.
Texto completo da fonteShukla, Naman, K. Anil Kumar, Madhu Allalla e Sanjay Tiwari. "Analysis of High Efficient Perovskite Solar Cells Using Machine Learning". Journal of Ravishankar University (PART-B) 35, n.º 1 (8 de março de 2022): 09–15. http://dx.doi.org/10.52228/jrub.2022-35-1-2.
Texto completo da fonteSharipov, Alexander, Boris Loukhovitski e Alexey Pelevkin. "Diffusion Coefficients of Electronically Excited Molecules". Physical-Chemical Kinetics in Gas Dynamics 22, n.º 1 (2021): 1–12. http://dx.doi.org/10.33257/phchgd.22.1.913.
Texto completo da fonteSharipov, A. S., B. I. Loukhovitski e A. V. Pelevkin. "Diffusion Coefficients of Electronically Excited Molecules". Fluid Dynamics 58, n.º 4 (agosto de 2023): 787–95. http://dx.doi.org/10.1134/s0015462823600943.
Texto completo da fonteChandrabose, Sreelakshmi, Kai Chen, Alex J. Barker, Joshua J. Sutton, Shyamal K. K. Prasad, Jingshuai Zhu, Jiadong Zhou et al. "High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films". Journal of the American Chemical Society 141, n.º 17 (9 de abril de 2019): 6922–29. http://dx.doi.org/10.1021/jacs.8b12982.
Texto completo da fonteLian, Tianquan. "(Keynote) Rational Design of Quantum Dot/Mediator Interfaces for Triplet Energy Transfer and Photon Upconversion". ECS Meeting Abstracts MA2022-02, n.º 20 (9 de outubro de 2022): 911. http://dx.doi.org/10.1149/ma2022-0220911mtgabs.
Texto completo da fonteLian, Tianquan. "(Invited) Rational Design of Quantum Dot/Mediator Interfaces for Triplet Energy Transfer and Photon Upconversion". ECS Meeting Abstracts MA2023-01, n.º 14 (28 de agosto de 2023): 1362. http://dx.doi.org/10.1149/ma2023-01141362mtgabs.
Texto completo da fonteNagaya Wong, Narumi, Seung Kyun Ha, Kristopher Williams, Wenbi Shcherbakov-Wu, James W. Swan e William A. Tisdale. "Robust estimation of charge carrier diffusivity using transient photoluminescence microscopy". Journal of Chemical Physics 157, n.º 10 (14 de setembro de 2022): 104201. http://dx.doi.org/10.1063/5.0100075.
Texto completo da fonteFusco, Roberta, Vincenza Granata, Mario Sansone, Robert Grimm, Paolo Delrio, Daniela Rega, Fabiana Tatangelo et al. "Intravoxel Incoherent Motion Model of Diffusion Weighted Imaging and Diffusion Kurtosis Imaging in Differentiating of Local Colorectal Cancer Recurrence from Scar/Fibrosis Tissue by Multivariate Logistic Regression Analysis". Applied Sciences 10, n.º 23 (1 de dezembro de 2020): 8609. http://dx.doi.org/10.3390/app10238609.
Texto completo da fonteChen, Chuan, Guanzhao Wen, Zijie Xiao, Jun Peng, Rong Hu, Zhifeng Chen, Chengyun Zhang e Wei Zhang. "Charge Photogeneration and Recombination Dynamics in PTQ10:Y6 Solar Cells". Photonics 9, n.º 12 (23 de novembro de 2022): 892. http://dx.doi.org/10.3390/photonics9120892.
Texto completo da fonteBates, Matthew, Sophia Y. Lunt e Richard R. Lunt. "Impact of charge character on anionic cyanine-based organic salt photovoltaics". Journal of Applied Physics 132, n.º 8 (28 de agosto de 2022): 085501. http://dx.doi.org/10.1063/5.0104901.
Texto completo da fonteBRAUN, OLEG M., IRINA I. ZELENSKAYA e YURI S. KIVSHAR. "DIFFUSION IN THE FRENKEL–KONTOROVA MODEL WITH ANHARMONIC INTERATOMIC INTERACTIONS". International Journal of Modern Physics B 08, n.º 17 (30 de julho de 1994): 2353–89. http://dx.doi.org/10.1142/s0217979294000968.
Texto completo da fontePataraya, A. D., e T. A. Pataraya. "Non-linear dynamo waves in an incompressible medium when the turbulence dissipative coefficients depend on temperature". Annales Geophysicae 15, n.º 1 (31 de janeiro de 1997): 97–100. http://dx.doi.org/10.1007/s00585-997-0097-z.
Texto completo da fonteTakeda, Jun, Takenari Goto e Masahiro Matsuoka. "Lifetime and Diffusion Coefficient of Free and Momentarily Localized Excitons in Red-HgI2". Journal of the Physical Society of Japan 57, n.º 9 (15 de setembro de 1988): 3248–55. http://dx.doi.org/10.1143/jpsj.57.3248.
Texto completo da fonteFlanders, Nathan C., Matthew S. Kirschner, Pyosang Kim, Thomas J. Fauvell, Austin M. Evans, Waleed Helweh, Austin P. Spencer, Richard D. Schaller, William R. Dichtel e Lin X. Chen. "Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics". Journal of the American Chemical Society 142, n.º 35 (11 de julho de 2020): 14957–65. http://dx.doi.org/10.1021/jacs.0c05404.
Texto completo da fonteLavenda, B. H. "On the Law of Equipartition for Translational Motion of Excited Molecules in Equilibrium with Thermal Radiation". Zeitschrift für Naturforschung A 44, n.º 4 (1 de abril de 1989): 273–77. http://dx.doi.org/10.1515/zna-1989-0404.
Texto completo da fonteBorowicz, Paweł, e Bernhard Nickel. "The Kinetics of Joined Action of Triplet-Triplet Annihilation and First-Order Decay of Molecules in T1State in the Case of Nondominant First-Order Process: The Kinetic Model in the Case of Spatially Periodic Excitation". Journal of Spectroscopy 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/346826.
Texto completo da fonteKucharek, H., M. Scholder e A. P. Matthews. "Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion". Nonlinear Processes in Geophysics 7, n.º 3/4 (31 de dezembro de 2000): 167–72. http://dx.doi.org/10.5194/npg-7-167-2000.
Texto completo da fonteSuzuki, S., e H. Itoh. "Determination of diffusion, reflection and deexcitation coefficients of metastable excited Ne(3P2) atom". Journal of Physics D: Applied Physics 49, n.º 18 (5 de abril de 2016): 185202. http://dx.doi.org/10.1088/0022-3727/49/18/185202.
Texto completo da fonteSong, Xiaolei, Ji Yi e Jing Bai. "A Parallel Reconstruction Scheme in Fluorescence Tomography Based on Contrast of Independent Inversed Absorption Properties". International Journal of Biomedical Imaging 2006 (2006): 1–7. http://dx.doi.org/10.1155/ijbi/2006/70839.
Texto completo da fonteCheon, Na Young, Hyun-Suk Kim, Jung-Eun Yeo, Orlando D. Schärer e Ja Yil Lee. "Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B". Nucleic Acids Research 47, n.º 16 (2 de agosto de 2019): 8337–47. http://dx.doi.org/10.1093/nar/gkz629.
Texto completo da fonteCheshire, Thomas P., Jéa Boodry, Erin A. Kober, M. Kyle Brennaman, Paul G. Giokas, David F. Zigler, Andrew M. Moran et al. "A quantitative model of charge injection by ruthenium chromophores connecting femtosecond to continuous irradiance conditions". Journal of Chemical Physics 157, n.º 24 (28 de dezembro de 2022): 244703. http://dx.doi.org/10.1063/5.0127852.
Texto completo da fonteNeimontas, K., R. Aleksiejūnas, M. Sūdžius, Kęstutis Jarašiūnas e Peder Bergman. "Optical Studies of Nonequilibrium Carrier Dynamics in Highly Excited 4H-SiC Epitaxial Layers". Materials Science Forum 483-485 (maio de 2005): 413–16. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.413.
Texto completo da fonteLi, Shenghong, e Junting Lv. "Stochastic stability and the moment Lyapunov exponent for a gyro-pendulum system driven by a bounded noise". Mechanical Sciences 14, n.º 2 (13 de dezembro de 2023): 545–55. http://dx.doi.org/10.5194/ms-14-545-2023.
Texto completo da fonteIglev, Hristo, Martin K. Fischer e Alfred Laubereau. "Electron detachment from anions in aqueous solutions studied by two- and three-pulse femtosecond spectroscopy". Pure and Applied Chemistry 82, n.º 10 (30 de junho de 2010): 1919–26. http://dx.doi.org/10.1351/pac-con-09-12-04.
Texto completo da fonteLi, G., A. Bruno, M. A. Lee, N. Lugaz, G. A. de Nolfo e J. M. Ryan. "Interpreting the Observed Positive Correlation between the Event-integrated Fluence and the Rollover Energy of Solar Energetic Particle Events by the PAMELA Mission with Coupled Hydromagnetic Wave Excitation and Proton Acceleration at Shocks in the Low Corona". Astrophysical Journal 936, n.º 1 (1 de setembro de 2022): 91. http://dx.doi.org/10.3847/1538-4357/ac81c2.
Texto completo da fonteHarrison, P. "Differentiating between constant and concentration-dependent diffusion coefficients via the optical spectroscopy of excitons in quantum wells". Semiconductor Science and Technology 11, n.º 7 (1 de julho de 1996): 1022–25. http://dx.doi.org/10.1088/0268-1242/11/7/008.
Texto completo da fonteKaulachs, I., A. Ivanova, A. Tokmakov, M. Roze, I. Mihailovs e M. Rutkis. "Perovskite CH3NH3PbI3–XClx Solar Cells and their Degradation (Part 1: A Short Review)". Latvian Journal of Physics and Technical Sciences 58, n.º 1 (29 de janeiro de 2021): 44–52. http://dx.doi.org/10.2478/lpts-2021-0005.
Texto completo da fonte