Artigos de revistas sobre o tema "Ethylene epoxidation"

Siga este link para ver outros tipos de publicações sobre o tema: Ethylene epoxidation.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ethylene epoxidation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

de Roo, C. Maurits, Johann B. Kasper, Martin van Duin, Francesco Mecozzi e Wesley Browne. "Off-line analysis in the manganese catalysed epoxidation of ethylene-propylene-diene rubber (EPDM) with hydrogen peroxide". RSC Advances 11, n.º 51 (2021): 32505–12. http://dx.doi.org/10.1039/d1ra06222k.

Texto completo da fonte
Resumo:
Epoxidation of ethylene-propylene-diene rubber (EPDM), based on 5-ethylidene-2-norbornene, to epoxidized EPDM (eEPDM) opens routes to cross-linking and reactive blending, with increased polarity aiding adhesion to polar materials such as silica.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jenkins, Cody, Jiashen Tian e Ryan J. Milcarek. "Short Term Silver Electrode Microstructure Changes Under Epoxidation Conditions for Solid Oxide Electrolysis Cells". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 185. http://dx.doi.org/10.1149/ma2023-0154185mtgabs.

Texto completo da fonte
Resumo:
Ethylene epoxidation is an important reaction to form ethylene oxide (EO), which is a precursor to many other critical chemicals. This study links short-term EO production to the effects on the microstructure of Ag/yttria-stabilized zirconia cells with and without an electrochemically promoted catalyst (EPOC). Nano scale features called striations were observed using a Scanning Electron Microscope on the silver under all reaction conditions tested. While appearing in both cases, the striations for the EPOC case are finer in size (~200 nm) compared to the no current case (~400 nm). These features did not appear when epoxidation conditions were not present. Striation formation was further linked to the epoxidation reaction through electrochemical impedance spectroscopy (EIS) and gas chromatography. Ethylene conversion to EO declines over the course of hours as striations form, indicating that striations have a negative influence on the reaction. Striation formation further effected the electrochemical performance of the cells, resulting in the low frequency depressions on EIS to shrink in both cases after 10 hours of epoxidation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Jenkins, Cody, Jiashen Tian e Ryan J. Milcarek. "Short Term Silver Electrode Microstructure Changes Under Epoxidation Conditions for Solid Oxide Electrolysis Cells". ECS Transactions 111, n.º 6 (19 de maio de 2023): 1209–21. http://dx.doi.org/10.1149/11106.1209ecst.

Texto completo da fonte
Resumo:
Ethylene epoxidation is an important reaction to form ethylene oxide (EO), which is a precursor to many other critical chemicals. This study links short-term EO production to the effects on the microstructure of Ag/yttria-stabilized zirconia cells with and without an electrochemically promoted catalyst (EPOC). Nano scale features called striations were observed using a Scanning Electron Microscope (SEM) on the silver under all reaction conditions tested. While appearing in both cases, the striations for the EPOC case are finer in size (~150 to 250 nm) compared to the no current case (~400 to 500 nm). These features did not appear when epoxidation conditions were not present. Striation formation was further linked to the epoxidation reaction through electrochemical impedance spectroscopy (EIS) and gas chromatography (GC). Ethylene conversion to EO declines over the course of hours as striations form, indicating that striations have a negative influence on the reaction. Striation formation further effected the electrochemical performance of the cells, resulting in the low frequency depressions observed in EIS to shrink in both cases after 10 hours of epoxidation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

VANSANTEN, R. "The mechanism of ethylene epoxidation". Journal of Catalysis 98, n.º 2 (abril de 1986): 530–39. http://dx.doi.org/10.1016/0021-9517(86)90341-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Maqbool, Muhammad, Toheed Akhter, Muhammad Faheem, Sohail Nadeem e Chan Ho Park. "Correction: CO2 free production of ethylene oxide via liquid phase epoxidation of ethylene using niobium oxide incorporated mesoporous silica material as the catalyst". RSC Advances 13, n.º 8 (2023): 5172. http://dx.doi.org/10.1039/d3ra90009f.

Texto completo da fonte
Resumo:
Correction for ‘CO2 free production of ethylene oxide via liquid phase epoxidation of ethylene using niobium oxide incorporated mesoporous silica material as the catalyst’ by Muhammad Maqbool et al., RSC Adv., 2023, 13, 1779–1786, https://doi.org/10.1039/D2RA07240H
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Liu, Xin, Yang Yang, Minmin Chu, Ting Duan, Changgong Meng e Yu Han. "Defect stabilized gold atoms on graphene as potential catalysts for ethylene epoxidation: a first-principles investigation". Catalysis Science & Technology 6, n.º 6 (2016): 1632–41. http://dx.doi.org/10.1039/c5cy01619c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gilbert, B., T. Cavoue, M. Aouine, L. Burel, F. J. Cadete Santos Aires, A. Caravaca, M. Rieu et al. "Ag-based electrocatalysts for ethylene epoxidation". Electrochimica Acta 394 (outubro de 2021): 139018. http://dx.doi.org/10.1016/j.electacta.2021.139018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Özbek, M. O., e R. A. van Santen. "The Mechanism of Ethylene Epoxidation Catalysis". Catalysis Letters 143, n.º 2 (12 de janeiro de 2013): 131–41. http://dx.doi.org/10.1007/s10562-012-0957-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Özbek, M. Olus, Isik Önal e Rutger A. van Santen. "Ethylene Epoxidation Catalyzed by Silver Oxide". ChemCatChem 3, n.º 1 (7 de outubro de 2010): 150–53. http://dx.doi.org/10.1002/cctc.201000249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Chen, Hsin-Tsung, e Chen-Wei Chan. "Promoting ethylene epoxidation on gold nanoclusters: self and CO induced O2 activation". Physical Chemistry Chemical Physics 17, n.º 34 (2015): 22336–41. http://dx.doi.org/10.1039/c5cp02809d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Greiner, M. T., T. E. Jones, B. E. Johnson, T. C. R. Rocha, Z. J. Wang, M. Armbrüster, M. Willinger, A. Knop-Gericke e R. Schlögl. "The oxidation of copper catalysts during ethylene epoxidation". Physical Chemistry Chemical Physics 17, n.º 38 (2015): 25073–89. http://dx.doi.org/10.1039/c5cp03722k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Xin, Jia-Ying, Ning Xu, Sheng-Fu Ji, Yan Wang e Chun-Gu Xia. "Epoxidation of Ethylene by Whole Cell Suspension of Methylosinus trichosporium IMV 3011". Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/9191382.

Texto completo da fonte
Resumo:
Methane monooxygenase (MMO) has been found in methanotrophic bacteria, which catalyzes the epoxidation of gaseous alkenes to their corresponding epoxides. The whole cell suspension of Methylosinus trichosporium IMV 3011 was used to produce epoxyethane from ethylene. The optimal reaction time and initial ethylene concentration for ethylene epoxidation have been described. The product epoxyethane is not further metabolized and accumulates extracellularly. Thus, exhaustion of reductant and the inhibition of toxic products make it difficult to accumulate epoxyethane continuously. In order to settle these problems, regeneration of cofactor NADH was performed in batch experiments with methane and methanol. The amount of epoxyethane formed before cosubstrate regeneration was between 0.8 and 1.0 nmol/50 mg cells in approximately 8 h. Combining data from 7 batch experiments, the total production of epoxyethane was 2.2 nmol. Production of epoxyethane was improved (4.6 nmol) in 10% gas phase methane since methane acts as an abundant reductant for epoxidation. It was found that the maximum production of epoxyethane (6.6 nmol) occurs with 3 mmol/L methanol. The passive effect of epoxyethane accumulation on epoxyethane production capacity of Methylosinus trichosporium IMV 3011 in batch experiments was studied. Removal of product was suggested to overcome the inhibition of epoxyethane production.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Nakano, Taku, Teddy G. Traylor e David Dolphin. "The formation of N-alkylporphyrins during epoxidation of ethylene catalyzed by iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin". Canadian Journal of Chemistry 68, n.º 9 (1 de setembro de 1990): 1504–6. http://dx.doi.org/10.1139/v90-231.

Texto completo da fonte
Resumo:
During the epoxidation of ethylene using iron meso-tetrakis(2,6-dichlorophenyl)porphyrin chloride and iodosopentafluorobenzene several N-alkylporphyrins were formed. The major product was 21-carboxymethyl-5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin. This was derived, by oxidation, from the corresponding 21-formylmethyl complex which in turn was obtained from the initially formed N-hydroxyethylporphyrin, a compound not isolated due to its ready oxidation. Keywords: N-alkylporphyrins, suicide labelling, cytochrome P-450, hemin catalysis, epoxidation, oxidation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Antonyshyn, Iryna, Olga Sichevych, Alim Ormeci, Ulrich Burkhardt, Karsten Rasim, Sven Titlbach, Marc Armbrüster, Stephan A. Schunk e Yuri Grin. "Ca–Ag compounds in ethylene epoxidation reaction". Science and Technology of Advanced Materials 20, n.º 1 (19 de setembro de 2019): 902–16. http://dx.doi.org/10.1080/14686996.2019.1655664.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

van Hoof, A. J. F., E. A. R. Hermans, A. P. van Bavel, H. Friedrich e E. J. M. Hensen. "Structure Sensitivity of Silver-Catalyzed Ethylene Epoxidation". ACS Catalysis 9, n.º 11 (19 de setembro de 2019): 9829–39. http://dx.doi.org/10.1021/acscatal.9b02720.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Berndt, Torsten, e Olaf Böge. "Gas-Phase Epoxidation of Propylene and Ethylene". Industrial & Engineering Chemistry Research 44, n.º 4 (fevereiro de 2005): 645–50. http://dx.doi.org/10.1021/ie049464m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Ramírez, Adrián, José L. Hueso, Reyes Mallada e Jesús Santamaría. "Ethylene epoxidation in microwave heated structured reactors". Catalysis Today 273 (setembro de 2016): 99–105. http://dx.doi.org/10.1016/j.cattod.2016.01.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Jun, Yang, Deng Jingfa, Yuan Xiaohong e Zhang Shi. "Rhenium as a promoter for ethylene epoxidation". Applied Catalysis A: General 92, n.º 2 (dezembro de 1992): 73–80. http://dx.doi.org/10.1016/0926-860x(92)80307-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

van Hoof, A. J. F., R. C. J. van der Poll, H. Friedrich e E. J. M. Hensen. "Dynamics of silver particles during ethylene epoxidation". Applied Catalysis B: Environmental 272 (setembro de 2020): 118983. http://dx.doi.org/10.1016/j.apcatb.2020.118983.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dawoodi, Z., e R. L. Kelly. "Epoxidation of ethylene catalysed by molybdenum complexes". Polyhedron 5, n.º 1-2 (janeiro de 1986): 271–75. http://dx.doi.org/10.1016/s0277-5387(00)84921-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Yan, Wenjuan, Anand Ramanathan, Madhav Ghanta e Bala Subramaniam. "Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6)". Catal. Sci. Technol. 4, n.º 12 (2014): 4433–39. http://dx.doi.org/10.1039/c4cy00877d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Carbonio, Emilia A., Tulio C. R. Rocha, Alexander Yu Klyushin, Igor Píš, Elena Magnano, Silvia Nappini, Simone Piccinin, Axel Knop-Gericke, Robert Schlögl e Travis E. Jones. "Are multiple oxygen species selective in ethylene epoxidation on silver?" Chemical Science 9, n.º 4 (2018): 990–98. http://dx.doi.org/10.1039/c7sc04728b.

Texto completo da fonte
Resumo:
We show atomic oxygen on an unreconstructed Ag(110) surface has a O 1s binding energy ≤ 528 eV and its stable at low coverages. Our findings point to the idea of multiple selective oxygen species in ethylene epoxidation on Ag.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Impeng, Sarawoot, Thantip Roongcharoen, Phornphimon Maitarad, Hongmin Wu, Chirawat Chitpakdee, Vinich Promarak, Liyi Shi e Supawadee Namuangruk. "High selective catalyst for ethylene epoxidation to ethylene oxide: A DFT investigation". Applied Surface Science 513 (maio de 2020): 145799. http://dx.doi.org/10.1016/j.apsusc.2020.145799.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Charchi Aghdam, Nazanin, Ning Chen e Jafar Soltan. "Ozonative epoxidation of ethylene: A novel process for production of ethylene oxide". Applied Catalysis A: General 661 (julho de 2023): 119239. http://dx.doi.org/10.1016/j.apcata.2023.119239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Linic, Suljo, e Mark A. Barteau. "Control of Ethylene Epoxidation Selectivity by Surface Oxametallacycles". Journal of the American Chemical Society 125, n.º 14 (abril de 2003): 4034–35. http://dx.doi.org/10.1021/ja029076g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ozbek, M. O., I. Onal e R. A. Van Santen. "Ethylene epoxidation catalyzed by chlorine-promoted silver oxide". Journal of Physics: Condensed Matter 23, n.º 40 (19 de setembro de 2011): 404202. http://dx.doi.org/10.1088/0953-8984/23/40/404202.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

KUNG, HAROLD H. "A KINETIC MODEL OF THE EPOXIDATION OF ETHYLENE". Chemical Engineering Communications 118, n.º 1 (novembro de 1992): 17–24. http://dx.doi.org/10.1080/00986449208936083.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Filimonova, N. B., A. V. Vorob’ev, K. V. Bozhenko, N. I. Moiseeva, S. P. Dolin, A. E. Gekhman e I. I. Moiseev. "Special features of ethylene epoxidation by peroxyacetic acid". Russian Journal of Physical Chemistry B 4, n.º 3 (junho de 2010): 408–12. http://dx.doi.org/10.1134/s1990793110030073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Jones, Travis E., Regina Wyrwich, Sebastian Böcklein, Emilia A. Carbonio, Mark T. Greiner, Alexander Yu Klyushin, Wolfgang Moritz et al. "The Selective Species in Ethylene Epoxidation on Silver". ACS Catalysis 8, n.º 5 (21 de março de 2018): 3844–52. http://dx.doi.org/10.1021/acscatal.8b00660.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Antonyshyn, Iryna, Olga Sichevych, Karsten Rasim, Alim Ormeci, Ulrich Burkhardt, Sven Titlbach, Stephan A. Schunk, Marc Armbrüster e Yuri Grin. "Anisotropic Reactivity of CaAg under Ethylene Epoxidation Conditions". Inorganic Chemistry 57, n.º 17 (16 de agosto de 2018): 10821–31. http://dx.doi.org/10.1021/acs.inorgchem.8b01449.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

AYAME, A. "Epoxidation of ethylene over Ag$z.sbnd;NaCl catalysts". Journal of Catalysis 100, n.º 2 (agosto de 1986): 401–13. http://dx.doi.org/10.1016/0021-9517(86)90107-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

van Hoof, Arno J. F., Ivo A. W. Filot, Heiner Friedrich e Emiel J. M. Hensen. "Reversible Restructuring of Silver Particles during Ethylene Epoxidation". ACS Catalysis 8, n.º 12 (8 de novembro de 2018): 11794–800. http://dx.doi.org/10.1021/acscatal.8b03331.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Yinsheng, Peng, Zhang Shi, Tang Liang e Deng Jingfa. "Study of the promoting effects in ethylene epoxidation". Catalysis Letters 12, n.º 1-3 (1992): 307–18. http://dx.doi.org/10.1007/bf00767213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Antonyshyn, Iryna, Olga Sichevych, Karsten Rasim, Alim Ormeci, Ulrich Burkhardt, Sven Titlbach, Stephan Andreas Schunk, Marc Armbrüster e Yuri Grin. "Chemical Behaviour of CaAg2 under Ethylene Epoxidation Conditions". European Journal of Inorganic Chemistry 2018, n.º 35 (26 de agosto de 2018): 3933–41. http://dx.doi.org/10.1002/ejic.201800710.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Li, Xian Feng, Jin Bing Li, Jian She Chen, Zhi Xiang Zhang, Wu Jun Dai, Bao Lin Cui e Qiang Lin. "Development and Application of YS Silver Catalysts for Ethylene Epoxidation". Advanced Materials Research 418-420 (dezembro de 2011): 1760–67. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.1760.

Texto completo da fonte
Resumo:
Ethylene oxide (EO) is an important organic chemical material, and Silver catalyst is an important petrochemical catalyst and is regarded as the core of EO/EG production process. The catalyst's performance is the major factor that directly determines the economic efficiency of commercial production of ethylene oxide. In this paper, we will introduce the development and application of YS silver catalysts developed by Beijing Research Institute of Chemical Industry, SINOPEC.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Suttikul, Thitiporn, Chakrit Tongurai, Hidetoshi Sekiguchi e Sumaeth Chavadej. "Ethylene Epoxidation in Cylindrical Dielectric Barrier Discharge: Effects of Separate Ethylene/Oxygen Feed". Plasma Chemistry and Plasma Processing 32, n.º 6 (5 de julho de 2012): 1169–88. http://dx.doi.org/10.1007/s11090-012-9398-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Ren, Qizhi, Zongsheng Hou, Hong Zhang, Aiqin Wang e Shuangyan Liu. "Catalytic enantioselective epoxidation of olefins by chiral mono-faced strapped porphyrin with nitrogen blocking ligand". Journal of Porphyrins and Phthalocyanines 13, n.º 12 (dezembro de 2009): 1214–20. http://dx.doi.org/10.1142/s1088424609001583.

Texto completo da fonte
Resumo:
The chiral mono-faced binaphthyl strapped porphyrins were synthesized and 1H NMR characterized. Asymmetric epoxidation of olefins such as styrene derivatives and trimethylsilyl ethylene with iodosobenzene as oxidant was achieved by using the iron complex as catalyst in the presence of a nitrogen ligand. Enantiomeric excess (ee) of 80% and yield of 88% were measured for the epoxidation of styrene in the presence of 4-phenyl pyridine. The coordination capability of nitrogen ligands to catalysts measured by UV-vis spectrophotometric titrations evidence that the unstrapped face of the mono-faced catalyst is blocked by the nitrogen ligand coordination to the iron ion of the catalyst.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Greiner, Mark T., Travis E. Jones, Alexander Klyushin, Axel Knop-Gericke e Robert Schlögl. "Ethylene Epoxidation at the Phase Transition of Copper Oxides". Journal of the American Chemical Society 139, n.º 34 (15 de agosto de 2017): 11825–32. http://dx.doi.org/10.1021/jacs.7b05004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Peña, Miguel A., David M. Carr, King Lun Yeung e Arvind Varma. "Ethylene epoxidation in a catalytic packed-bed membrane reactor". Chemical Engineering Science 53, n.º 22 (novembro de 1998): 3821–34. http://dx.doi.org/10.1016/s0009-2509(98)00189-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Zhou, Xing-Gui, e Wei-Kang Yuan. "Optimization of the fixed-bed reactor for ethylene epoxidation". Chemical Engineering and Processing: Process Intensification 44, n.º 10 (outubro de 2005): 1098–107. http://dx.doi.org/10.1016/j.cep.2005.03.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Won Park, Dae, e Georges Gau. "Simulation of ethylene epoxidation in a multitubular transport reactor". Chemical Engineering Science 41, n.º 1 (1986): 143–50. http://dx.doi.org/10.1016/0009-2509(86)85207-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Ozbek, M. O., I. Onal e R. A. van Santen. "Effect of Surface and Oxygen Coverage on Ethylene Epoxidation". Topics in Catalysis 55, n.º 11-13 (26 de julho de 2012): 710–17. http://dx.doi.org/10.1007/s11244-012-9870-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

BOSKOVIC, G. "Deactivation kinetics of Ag/Al2O3 catalyst for ethylene epoxidation". Journal of Catalysis 226, n.º 2 (setembro de 2004): 334–42. http://dx.doi.org/10.1016/j.jcat.2004.06.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ozbek, M. O., I. Onal e R. A. van Santen. "Why silver is the unique catalyst for ethylene epoxidation". Journal of Catalysis 284, n.º 2 (dezembro de 2011): 230–35. http://dx.doi.org/10.1016/j.jcat.2011.08.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Marek, E. J., S. Gabra, J. S. Dennis e S. A. Scott. "High selectivity epoxidation of ethylene in chemical looping setup". Applied Catalysis B: Environmental 262 (março de 2020): 118216. http://dx.doi.org/10.1016/j.apcatb.2019.118216.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Russo, V., T. Kilpiö, J. Hernandez Carucci, M. Di Serio e T. O. Salmi. "Modeling of microreactors for ethylene epoxidation and total oxidation". Chemical Engineering Science 134 (setembro de 2015): 563–71. http://dx.doi.org/10.1016/j.ces.2015.05.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

YANG, J., J. DENG, X. YUAN e S. ZHANG. "ChemInform Abstract: Rhenium as a Promoter for Ethylene Epoxidation." ChemInform 24, n.º 11 (20 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199311086.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Özbek, M. Oluş, Işik Önal e Rutger A. van Santen. "Chlorine and Caesium Promotion of Silver Ethylene Epoxidation Catalysts". ChemCatChem 5, n.º 2 (21 de janeiro de 2013): 443–51. http://dx.doi.org/10.1002/cctc.201200690.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Lu, Xinqing, Wen-Juan Zhou, Yejun Guan, Armin Liebens e Peng Wu. "Enhancing ethylene epoxidation of a MWW-type titanosilicate/H2O2 catalytic system by fluorine implanting". Catalysis Science & Technology 7, n.º 12 (2017): 2624–31. http://dx.doi.org/10.1039/c7cy00428a.

Texto completo da fonte
Resumo:
SiO3/2F units in the framework of Ti-MWW generate stronger hydrogen-bonding between Hend in Ti–Oα–Oβ–Hend intermediates and the adjacent Si–F species, which effectively improves the catalytic performance of Ti-MWW for the liquid-phase epoxidation of ethylene.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Suttikul, Thitiporn, Sirirath Yaowapong-aree, Hidetoshi Sekiguchi, Sumaeth Chavadej e Jittipan Chavadej. "Improvement of ethylene epoxidation in low-temperature corona discharge by separate ethylene/oxygen feed". Chemical Engineering and Processing: Process Intensification 70 (agosto de 2013): 222–32. http://dx.doi.org/10.1016/j.cep.2013.03.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia