Siga este link para ver outros tipos de publicações sobre o tema: Équations Différentielles Ordinaires neuronales.

Teses / dissertações sobre o tema "Équations Différentielles Ordinaires neuronales"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 38 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Équations Différentielles Ordinaires neuronales".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.

1

Monsel, Thibault. "Deep Learning for Partially Observed Dynamical Systems". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG113.

Texto completo da fonte
Resumo:
Les équations différentielles partielles (EDP) sont la pierre angulaire de la modélisation des systèmes dynamiques dans diverses disciplines scientifiques. Traditionnellement, les scientifiques utilisent une méthodologie rigoureuse pour interagir avec les processus physiques, collecter des données empiriques et dériver des modèles théoriques. Cependant, même lorsque ces modèles correspondent étroitement aux données observées, ce qui n'est souvent pas le cas, les simplifications nécessaires à l'étude et à la simulation peuvent obscurcir notre compréhension des phénomènes sous-jacents.Cette thèse explore la manière dont les données acquises à partir de systèmes dynamiques peuvent être utilisées pour améliorer et/ou dériver de meilleurs modèles. Le manuscrit se concentre particulièrement sur les dynamiques partiellement observées, où l'état complet du système n'est pas complètement mesuré ou observé. Grâce à la théorie des systèmes partiellement observés, y compris le formalisme de Mori-Zwanzig et le théorème de Takens, nous motivons une structure non-markovienne, en particulier les équations différentielles à retardement (EDR).En combinant le pouvoir d'expression des réseaux neuronaux avec les EDR, nous proposons de nouveaux modèles pour les systèmes partiellement observés. Comme les EDP basées sur les réseaux neuronaux (EDP neuronales) en sont encore à leurs débuts, nous étendons l'état actuel de l'art dans ce domaine en étudiant et en comparant les modèles d'EDP neuronales avec des types de retard arbitraires connus a-priori à travers une variété de systèmes dynamiques. Ces références incluent des systèmes avec des retards dépendant du temps et de l'état. Sur la base de ces études, nous explorons ensuite la paramétrisation des retards constants dans les EDP neuronales. Nos résultats démontrent que l'introduction de retards constants pouvant être appris, par opposition à des configurations de retards fixes, permet d'améliorer les performances globales de la modélisation et de l'ajustement des systèmes dynamiques.Nous appliquons ensuite les EDP neurales non markoviennes avec des retards constants pouvant être appris à la modélisation de la fermeture et de la correction des systèmes dynamiques, en démontrant une meilleure précision à long terme par rapport aux termes des équations différentielles ordinaires. Enfin, nous explorons l'utilisation des EDR neuronales dans le contexte de la commande prédictive de modèle pour le contrôle des systèmes dynamiques
Partial Differential Equations (PDEs) are the cornerstone of modeling dynamical systems across various scientific disciplines. Traditionally, scientists employ a rigorous methodology to interact with physical processes, collect empirical data, and derive theoretical models. However, even when these models align closely with observed data, which is often not the case, the necessary simplifications made for study and simulation can obscure our understanding of the underlying phenomena.This thesis explores how data acquired from dynamical systems can be utilized to improve and/or derive better models. The manuscript focuses particularly on partially observed dynamics, where the system's full state is not completely measured or observed. Through the theory of partially observed systems, including the Mori-Zwanzig formalism and Takens' theorem, we motivate a non-Markovian structure, specifically Delay Differential Equations (DDEs).By combining the expressive power of neural networks with DDEs, we propose novel models for partially observed systems. As neural network-based DDEs (Neural DDEs) are still in their infancy, we extend the current state of the art in this field by studying and benchmarking Neural DDE models with a-priori known arbitrary delay types across a variety of dynamical systems. These benchmarks include systems, with time-dependent and state-dependent delays. Building upon these investigations, we then explore the parameterization of constant delays in Neural DDEs. Our findings demonstrate that introducing learnable constant delays, as opposed to fixed delay configurations, results in improved overall performance in dynamical system modeling and fitting.We then apply the non-Markovian Neural DDEs with learnable constant delays to dynamical system closure and correction modeling, demonstrating improved long-term accuracy compared to Ordinary Differential Equation terms. Lastly, we explore the use of Neural DDEs in the context of Model Predictive Control (MPC) for controlling dynamical systems
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wone, Oumar. "Théorie des invariants des équations différentielles : équations d’Abel et de Riccati". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14481/document.

Texto completo da fonte
Resumo:
Nous utilisons la méthode d'équivalence de Cartan pour réaliser une étude géométrique des équations différentielles ordinaires du second ordre et du premier ordre, sous l'action des transformations ponctuelles préservant les aires dans le cas du second ordre et de certaines autres transformations dans le cas du premier. Cela nous permet de caractériser de manière invariante toutes les équations différentielles du second ordre se ramenant à y"=0. De plus nous associons à toute telle équation, une connexion de Cartan affine normale dont la courbure contient tous ses invariants. Dans le cas du premier ordre nous apportons un regard nouveau sur une étude de R. Liouville concernant l'équation différentielle d'Abel. Enfin dans un autre ordre d'idées nous réalisons une étude de certaines solutions algébriques de l'équation de Riccati
Abstract
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bohé, Adriana. "Sauts singuliers dans des problèmes de perturbation singulière d'équations différentielles ordinaires". Paris 7, 1991. http://www.theses.fr/1991PA077009.

Texto completo da fonte
Resumo:
Cette thèse porte sur l'étude des propriétés des sauts singuliers des solutions des équations différentielles ordinaires singulièrement perturbées. Les sauts sont étudiés comme des trajectoires du champ de vecteurs lent-rapide associé à l'équation. L'espace des phases convenable, qui permet de décrire les sauts singuliers de toutes les solutions, est déterminé en fonction de l'ordre de l'instant singulier que présente l'équation. Cet espace des phases fournit un modèle de champ de vecteurs dont les trajectoires sont une bonne approximation des sauts. L'étude du modèle permet de décrire les sauts, calculer leur origine, leur extrémité et leur épaisseur. Il permet également de rendre compte du processus de la disparition des sauts. Les propriétés établies sont utilisées dans la résolution de quelques problèmes aux limites concernant les équations sur quadratiques qui présentent un instant singulier
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cherif, Abdoul Aziz. "Contribution à la recherche de solutions périodiques d'équations différentielles fonctionnelles et de systèmes ordinaires forcés". Pau, 1990. http://www.theses.fr/1990PAUU3010.

Texto completo da fonte
Resumo:
Le travail comporte une partie sur les équations à retard et une autre sur les systèmes forcés. Dans la partie sur les équations à retard nous construisons une paramétrisation de la branche des solutions des périodes 4 de l'équation X(T)=-LF(X(T-1)) qui bifurque à partir de L=PI sur deux, ce qui permet d'étudier la bifurcation. Puis nous montrons que l'équation X(T)=-LX(T)-F(X(T-R)) peut avoir des solutions de période 3R. Pour cela, nous associons à cette équation le système ordinaire X(T)=-LX(T)-F(X(T)), F convenablement choisi et nous cherchons les solutions périodiques de ce système. Dans la partie sur les systèmes forcés, nous montrons l'existence de solutions périodiques du système X(T)=P(Y(T))+EG(T), Y(T)=Q(X(T))+EH(T) à partir des solutions du système non forcé.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chen, Guoting. "Solutions formelles de systèmes d'équations différentielles ordinaires linéaires homogènes". Phd thesis, Grenoble 1, 1990. http://tel.archives-ouvertes.fr/tel-00338379.

Texto completo da fonte
Resumo:
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions formelles des systèmes d'équations différentielles linéaires ordinaires dépendant (ou pas) d'un paramètre et opérations fondamentales pour les opérateurs différentiels. Dans la première partie: nous avons démontre la convergence d'un algorithme et développe un programme en macsyma pour le calcul de la forme de Frobenius et Jordan de matrices holomorphes. Nous avons aussi développé un algorithme et un programme en macsyma pour le calcul de formes de Arnold-Wasow de matrices et systèmes différentiels dépendant d'un paramètre. Grâce a ces algorithmes, l'algorithme de Turrittin-Wasow est adapte au calcul formel pour trouver les solutions formelles de systemes differentiels dépendant d'un paramétré. Nous avons developpe un programme en macsyma pour le calcul de solutions formelles de systèmes différentiels dans un voisinage du point singulier régulier. Dans la deuxième partie: nous avons développe des algorithmes pour des opérations fondamentales sur deux opérateurs différentiels: le plus grand commun diviseur, le plus petit commun multiples, l'algorithme de Bezout, le pseudo-résultant. Nous avons aussi étudie une généralisation directe de la notion de base de Grobner dans l'anneau des opérateurs différentiels a coefficients polynomiaux, i.e. L'algèbre de Weyl
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ayachi, Moez. "Méthodes fonctionnelles et variationnelles pour l'existence des solutions presque-périodiques des équations différentielles ordinaires à retard". Phd thesis, Paris 1, 2009. http://www.theses.fr/2009PA010044.

Texto completo da fonte
Resumo:
L'objet de cette thèse est le développement de méthodes variationnelles pour l'étude des solutions presque-périodiques au sens de H. Bohr et au sens de Besicovitch de quelques classes d'équations différentielles ordinaires du second ordre à retard. Pour cela on utilise le Calcul des variations en moyenne temporelle. Dans un premier temps on étudie une classe d'équations différentielles à retard fini, enfin on s'intéresse à une classe d'équations différentielles à retard infini.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Vilmart, Gilles. "Étude d'intégrateurs géométriques pour des équations différentielles". Phd thesis, Université Rennes 1, 2008. http://tel.archives-ouvertes.fr/tel-00348112.

Texto completo da fonte
Resumo:
Le sujet de la thèse est l'étude et la construction de méthodes numériques géométriques pour les équations différentielles, qui préservent des propriétés géométriques du flot exact, notamment la symétrie, la symplecticité des systèmes hamiltoniens, la conservation d'intégrales premières, la structure de Poisson, etc.
Dans la première partie, on introduit une nouvelle approche de construction d'intégrateurs numériques géométriques d'ordre élevé en s'inspirant de la théorie des équations différentielles modifiées. Le cas des méthodes développables en B-séries est spécifiquement analysé et on introduit une nouvelle loi de composition sur les B-séries. L'efficacité de cette approche est illustrée par la construction d'un nouvel intégrateur géométrique d'ordre élevé pour les équations du mouvement d'un corps rigide. On obtient également une méthode numérique précise pour le calcul de points conjugués pour les géodésiques du corps rigide.
Dans la seconde partie, on étudie dans quelle mesure les excellentes performances des méthodes symplectiques, pour l'intégration à long terme en astronomie et en dynamique moléculaire, persistent pour les problèmes de contrôle optimal. On discute également l'extension de la théorie des équations modifiées aux problèmes de contrôle optimal.
Dans le même esprit que les équations modifiées, on considère dans la dernière partie des méthodes de pas fractionnaire (splitting) pour les systèmes hamiltoniens perturbés, utilisant des potentiels modifiés. On termine par la construction de méthodes de splitting d'ordre élevé avec temps complexes pour les équations aux dérivées partielles paraboliques, notamment les problèmes de réaction-diffusion en chimie.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

N'Diaye, Mamadou. "Étude et développement de méthodes numériques d’ordre élevé pour la résolution des équations différentielles ordinaires (EDO) : Applications à la résolution des équations d'ondes acoustiques et électromagnétiques". Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3023/document.

Texto completo da fonte
Resumo:
Dans cette thèse, nous étudions et développons différentes familles de schémas d’intégration en temps pour les EDO linéaires. Dans la première partie, après avoir introduit les définitions et propriétés utilisées pour construire les schémas en temps, nous présentons deux méthodes de discrétisation en espace et une revue des schémas de Runge-Kutta (RK) qui sont couramment utilisés dans la littérature. Dans la seconde partie on présente une méthodologie pour construire deux familles de schémas A-stable pour un ordre quelcomque. Puis on fournit des schémas explicites, construits en maximisant leur nombre CFL pour un profil de spectre donné. Ces schémas explicites sont ensuite combinés aux schémas implicites A-stable, pour construire des schémas localement implicites que nous décrivons. En plus des tests de validations des schémas pour des problèmes en dimension un et deux de l’espace, nous présentons des résultats numériques obtenus en résolvant des problèmes de propagation d’ondes acoustiques et électromagnétiques en dimensions trois dans la troisième partie
In this thesis, we study and develop different families of time integration schemes for linear ODEs. After presenting the space discretisation methods and a review of classical Runge-Kutta schemes in the first part, we construct high-order A-stable time integration schemes for an arbitrary order with low-dissipation and low-dispersion effects in the second part. Then we develop explicit schemes with an optimal CFL number for a typical profile of spectrum. The obtained CFL number and the efficiency on the typical profile for each explicit scheme are given. Pursuing our aim, we propose a methodology to construct locally implicit methods of arbitrary order. We present the locally implicit methods obtained from the combination of the A-stable implicit schemes we have developed and explicit schemes with optimal CFL number. We use them to solve the acoustic wave equation and provide convergence curves demonstrating the performance of the obtained schemes. In addition of the different 1D and 2D validation tests performed while solving the acoustic wave equation, we present numerical simulation results for 3D acoustic wave and the Maxwell’s equations in the last part
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Vilmart, Gilles. "Méthodes numériques géométriques et multi-échelles pour les équations différentielles (in English)". Habilitation à diriger des recherches, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00840733.

Texto completo da fonte
Resumo:
Mes travaux de recherche portent sur l'analyse numérique des intégrateurs géométriques et multi-échelles pour les équations différentielles déterministes ou stochastiques. Les modèles d'équations différentielles issus de la physique ou la chimie possèdent souvent une structure géométrique ou multi-échelles particulière (par exemple, les structures hamiltoniennes, les intégrales premières, les structures multi-échelles en temps ou en espace, les systèmes hautement oscillatoires), mais leur complexité est souvent telle qu'une solution satisfaisante est hors de portée en utilisant seulement des méthodes numériques standards à usage général. L'objectif est donc d'identifier les propriétés géométriques ou multi-échelles pertinentes de ces problèmes, et d'en tirer avantage pour concevoir et analyser de nouveaux intégrateurs efficaces, fiables et précis, reproduisant fidèlement le comportement qualitatif de la solution exacte des modèles considérés.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Honore, Igor. "Estimations non-asymptotiques de mesures invariantes et régularisation par un bruit dégénéré de chaînes d’équations différentielles ordinaires". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLE042/document.

Texto completo da fonte
Resumo:
Dans la première partie de cette thèse, nous chercherons à estimer la mesure invariante d’un processus ergodique dirigé par une Équation Différentielle Stochastique.Le théorème ergodique nous suggère de considérer la mesure empirique associée à un schéma d’approximation du processus sous-jacent qui peut se voir comme le pendant discret de la mesure d’occupation dudit processus. Lamberton et Pagès ont introduit un algorithme de discrétisation à pas décroissant qui assure la convergence de la mesure empirique du schéma vers la mesure invariante du processus considéré ainsi qu’un théorème central limite (TCL) quantifiant asymptotiquement l’écart entre ces deux mesures. Nous établissons des inégalités de concentration non-asymptotiques pour les déviations de la mesure empirique (cohérentes avec le TCL mentionné ci-avant), ainsi que des contrôles sur la solution de l’équation de Poisson associée, utiles pour ces inégalités.Dans une seconde partie, nous établissons des estimées de Schauder liées à des équations paraboliques associées à un système stochastique dégénéré, où la dérive est un champ de vecteurs vérifiant une condition de type Hörmander (faible) mais en cherchant la régularité Hölder minimale. Ce travail fait suite à l’article de Delarue et Menozzi (2010). Enfin, notre approche nous permet de montrer l’unicité forte du système stochastique considéré dans le cadre de coefficients Hölder, étendant ainsi le résultat obtenu en dimension 2 par Chaudru de Raynal (2017)
In the first part of this thesis, we aim to estimate the invariant distribution of an ergodic process driven by a Stochastic Differential Equation. The ergodic theorem suggests us to consider the empirical measure associated with a discretization scheme of the process which can be regarded as a discretization of the occupation measure of the process.Lamberton and Pagès introduced an algorithm of discretization with decreasing time steps which allows the convergence of the empirical measure toward the invariant distribution of the process, they also provide a central limit theorem (CLT) which asymptotically quantifies the deviations between these both measures.We establish non-asymptotic concentration inequality for the empirical measure deviations (in accordance with the previously mentioned CLT), and also we give some controls of the solution of the associated Poisson equation which is useful for this concentration inequalities.In a second part, we establish some Schauder controls associated with parabolic equations related with a degenerate stochastic system, where the drift is a vector field satisfying a weak Hörmander condition like.But we aim to suppose only the minimal H"older regularity.This work is an extension of the estimates given by Delarue and Menozzi (2010).Finally, our approach allows us to proof the strong uniqueness of the considered stochastic equation in a H"older regularity framework. Our results extend the controls of Chaudru de Raynal (2017) for the dimension equal to 2
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Boussaada, Islam. "Contribution à l'étude des solutions périodiques et des centres isochrones des systèmes d'équations différentielles ordinaires plans". Phd thesis, Rouen, 2008. http://www.theses.fr/2008ROUES056.

Texto completo da fonte
Resumo:
La première partie, (il s'agit d'un travail publié et écrit en collaboration avec R. Chouikha), est consacrée à la recherche des solutions périodiques de "l'équation de Liénard généralisée". On démontre un théorème qui assure dans certains cas l'existence de telles solutions. La seconde partie est consacrée à la recherche de centres isochrones de systèmes d'équations différentielles ordinaires polynomiaux plans. Grâce à l'usage de C-algorithme, on détermine huit nouveaux cas de centres isochrones. On montre aussi l'efficacité de la méthode des formes normales dans de telles recherches, en examinant des systèmes d'ordre 2, 3, 4 et en retrouvant de manière uniforme plusieurs résultats déjà connus
The first part (which is an already published paper, written in collaboration with R. Chouikha) is devoted to the search of periodic solutions of "generalized Liénard equation". A theorem is proved which insures the existence of such solutions under appropriate assumptions. The second part is devoted to the search of isochronous centers of the planar polynomial systems of ordinary differential equations. Using C-algorithm we determine eight new cases of isochronous centers. We prove also the efficiency of the normal forms method for such investigations ; studying some systems of order 2, 3, 4 and recovering in uniform way some already known results
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Boussaada, Islam. "Contribution à l'étude des solutions périodiques et des centres isochrones des systèmes d'équations différentielles ordinaires plans". Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00348281.

Texto completo da fonte
Resumo:
Le sujet global de cette thèse est l'étude des solutions périodiques des systèmes plans d'équations différentielles ordianaires. Elle est divisée en deux grandes parties.
La première partie, (il s'agit d'un travail publié et écrit en collaboration avec R. Chouikha) est consacré à la recherche des solutions périodiques de « l'équation de Liénard généralisée ». On démontre un théorème qui asure dans certains cas l'existence de telles solutions.
La seconde partie est consacré à la recherche de centres isochrones de systèmes d'équations différentielles ordinaires polynomiaux plans. Grâce à l'usage de C-algorithme, on détermine huit nouveaux cas. On montre aussi l'efficacité de la méthode des formes normales dans de telles recherches, en examinant des systèmes d'ordre 2, 3, 4 et en retrouvant de manière uniforme plusieurs résultats déjà connus.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sarmis, Merdan. "Etude de l'activité neuronale : optimisation du temps de simulation et stabilité des modèles". Thesis, Mulhouse, 2013. http://www.theses.fr/2013MULH3848/document.

Texto completo da fonte
Resumo:
Les neurosciences computationnelles consistent en l’étude du système nerveux par la modélisation et la simulation. Plus le modèle sera proche de la réalité et plus les ressources calculatoires exigées seront importantes. La question de la complexité et de la précision est un problème bien connu dans la simulation. Les travaux de recherche menés dans le cadre de cette thèse visent à améliorer la simulation de modèles mathématiques représentant le comportement physique et chimique de récepteurs synaptiques. Les modèles sont décrits par des équations différentielles ordinaires (EDO), et leur résolution passe par des méthodes numériques. Dans le but d’optimiser la simulation, j’ai implémenté différentes méthodes de résolution numérique des EDO. Afin de faciliter la sélection du meilleur algorithme de résolution numérique, une méthode nécessitant un minimum d’information a été proposée. Cette méthode permet de choisir l’algorithme qui optimise la simulation. La méthode a permis de démontrer que la dynamique d’un modèle de récepteur synaptique influence plus les performances des algorithmes de résolution que la structure cinétique du modèle lui-même. De plus, afin de caractériser des comportements pathogènes, une phase d’optimisation est réalisée. Cependant, certaines valeurs de paramètres rendent le modèle instable. Une étude de stabilité a permis de déterminer la stabilité du modèle pour des paramètres fournis par la littérature, mais également de remonter à des contraintes de stabilité sur les paramètres. Le respect de ces contraintes permet de garantir la stabilité des modèles étudiés, et donc de garantir le succès de la procédure permettant de rendre un modèle pathogène
Computational Neuroscience consists in studying the nervous system through modeling and simulation. It is to characterize the laws of biology by using mathematical models integrating all known experimental data. From a practical point of view, the more realistic the model, the largest the required computational resources. The issue of complexity and accuracy is a well known problem in the modeling and identification of models. The research conducted in this thesis aims at improving the simulation of mathematical models representing the physical and chemical behavior of synaptic receptors. Models of synaptic receptors are described by ordinary differential equations (ODE), and are resolved with numerical procedures. In order to optimize the performance of the simulations, I have implemented various ODE numerical resolution methods. To facilitate the selection of the best solver, a method, requiring a minimum amount of information, has been proposed. This method allows choosing the best solver in order to optimize the simulation. The method demonstrates that the dynamic of a model has greater influence on the solver performances than the kinetic scheme of the model. In addition, to characterize pathogenic behavior, a parameter optimization is performed. However, some parameter values lead to unstable models. A stability study allowed for determining the stability of the models with parameters provided by the literature, but also to trace the stability constraints depending to these parameters. Compliance with these constraints ensures the stability of the models studied during the optimization phase, and therefore the success of the procedure to study pathogen models
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Forget, Thomas. "Points tournants dégénérés". Phd thesis, Université de La Rochelle, 2007. http://tel.archives-ouvertes.fr/tel-00145063.

Texto completo da fonte
Resumo:
L'objet de ce travail est l'étude des points tournants dégénérés. Nous considèrerons des équations différentielles réelles, du premier ordre, singulièrement perturbées à un paramètre réel et admettant une telle singularité. En nous plaçant dans les hypothèses d'apparition de solutions (de type) "vrai canard", nous donnerons alors à cette équation une forme, dite préparée, plus adaptée au travail que nous effectuerons.
Nous montrerons ensuite, pour une classe générale d'équations de ce type, l'existence de solutions "canard". À la suite de quoi, nous étudierons asymptotiquement ces solutions à travers la mise en place d'un cadre formel général. La correspondance ainsi mise en place nous permettra d'implémenter le développement asymptotique en puissances du petit paramètre de perturbation de ces solutions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Carra, Alexandre. "Modèle physique discret et systèmes différentiels : vers l'élaboration d'un simulateur cellulaire". Phd thesis, Grenoble 1, 2008. http://www.theses.fr/2008GRE10037.

Texto completo da fonte
Resumo:
Ce travail de thèse constitue une première étape vers l'élaboration d'un simulateur cellulaire destiné aux biologistes. Nous proposons une approche dynamique en trois dimensions pour la modélisation de systèmes biologiques en combinant des mécanismes d'origine diverse (élasticité cellulaire, dynamique du cytosquelette, réactions chimiques) à différentes échelles de temps (de la seconde à la minute) et d'espace (depuis l'intérieur de la cellule jusqu'à une population de cellules). Une relation explicite est ainsi établie entre les réactions chimiques hébergées par la cellule et la dynamique de son mouvement tout en considérant les signaux extracellulaires. Nous nous intéressons également aux lois d'interaction entre objets biologiques et nous attachons à décrire différents types de contacts (cellule-cellule, cellule-substrat), leur évolution dynamique (glissement, roulement) et les conséquences sur l'architecture de la cellule ou du tissu
This thesis is a first step towards the elaboration of a cellular simulator for the biologists. We propose a dynamic 3D approach for the modeling of biological systems by combining mechanisms of diverse origin (cell elasticity, cytoskeleton dynamics, chemical reactions) at different time (from the second to the minute) and length scales (from micrometers to tens of millimeters). Thus, an explicit relationship is established between the chemical reactions hosted by the cell and the dynamics of its movement while taking into account the extracellular signaling. We are also interested in the interaction laws between biological objects and we pay particular attention to describe several types of contacts (cell-cell, cell-substrate), their dynamic evolution (sliding, rolling) and the consequences on cellular or tissular architecture
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Carra, Alexandre. "Modèle physique discret et systèmes différentiels : vers l'élaboration d'un simulateur cellulaire". Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00284999.

Texto completo da fonte
Resumo:
Ce travail de thèse constitue une première étape vers l'élaboration d'un simulateur cellulaire destiné aux biologistes. Nous proposons une approche dynamique en trois dimensions pour la modélisation de systèmes biologiques en combinant des mécanismes d'origine diverse (élasticité cellulaire, dynamique du cytosquelette, réactions chimiques) à différentes échelles de temps (de la seconde à la minute) et d'espace (depuis l'intérieur de la cellule jusqu'à une population de cellules). Une relation explicite est ainsi établie entre les réactions chimiques hébergées par la cellule et la dynamique de son mouvement tout en considérant les signaux extracellulaires. Nous nous intéressons également aux lois d'interaction entre objets biologiques et nous attachons à décrire différents types de contacts (cellule-cellule, cellule-substrat), leur évolution dynamique (glissement, roulement) et les conséquences sur l'architecture de la cellule ou du tissu.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Elias, Jan. "Modélisation mathématique du rôle et de la dynamique temporelle de la protéine p53 après dommages à l'ADN induits par les médicaments anticancéreux". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066253/document.

Texto completo da fonte
Resumo:
Plusieurs modèles pharmacocinétiques-pharmacodynamiques moléculaires ont été proposés au cours des dernières décennies afin de représenter et de prédire les effets d'un médicament dans les chimiothérapies anticancéreuses. La plupart de ces modèles ont été développés au niveau de la population de cellules, puisque des effets mesurables peuvent y être observés beaucoup plus facilement que dans les cellules individuelles.Cependant, les véritables cibles moléculaires des médicaments se trouvent au niveau de la cellule isolée. Les médicaments utilisés soit perturbent l'intégrité du génome en provoquant des ruptures de brins de l'ADN et par conséquent initialisent la mort cellulaire programmée (apoptose), soit bloquent la prolifération cellulaire, par inhibition des protéines (cdks) qui permettent aux cellules de procéder d'une phase du cycle cellulaire à la suivante en passant par des points de contrôle (principalement en $G_1/S$ et $G_2/M$). Les dommages à l'ADN causés par les médicaments cytotoxiques ou la $\gamma$-irradiation activent, entre autres, les voies de signalisation contrôlées par la protéine p53 qui forcent directement ou indirectement la cellule à choisir entre la survie et la mort.Cette thèse vise à explorer en détail les voies intracellulaires impliquant la protéine p53, ``le gardien du génome", qui sont initiées par des lésions de l'ADN, et donc de fournir un rationnel aux cancérologues pour prédire et optimiser les effets des médicaments anticancéreux en clinique. Elle décrit l'activation et la régulation de la protéine p53 dans les cellules individuelles après leur exposition à des agents causant des dommages à l'ADN. On montre que les comportements dynamiques qui ont été observés dans les cellules individuelles peuvent être reconstruits et prédits par fragmentation des événements cellulaires survenant après lésion de l'ADN, soit dans le noyau, soit dans le cytoplasme. Ceci est mis en œuvre par la description du réseau des protéines à l'aide d'équations différentielles ordinaires (EDO) et partielles (EDP) impliquant plusieurs agents dont les protéines ATM, p53, Mdm2 et Wip1, dans le noyau aussi bien que dans le cytoplasme, et entre les deux compartiments. Un rôle positif de Mdm2 dans la synthèse de p53, qui a été récemment observé, est exploré et un nouveau mécanisme provoquant les oscillations de p53 est proposé. On pourra noter en particulier que le nouveau modèle rend compte d'observations expérimentales qui n'ont pas pu être entièrement expliquées par les modèles précédents, par exemple, l'excitabilité de p53.En utilisant des méthodes mathématiques, on observe de près la façon dont un stimulus (par exemple, une $\gamma$-irradiation ou des médicaments utilisés en chimiothérapie) est converti en un comportement dynamique spécifiques (spatio-temporel) de p53, en particulier que ces dynamiques spécifiques de p53, comme messager de l'information cellulaire, peuvent moduler le cycle de division cellulaire, par exemple provoquant l'arrêt du cycle ou l'apoptose. Des modèles mathématiques EDO et EDP de réaction-diffusion sont utilisés pour examiner comment le comportement (spatio-temporel) de p53 émerge, et nous discutons des conséquences de ce comportement sur les réseaux moléculaires, avec des applications possibles dans le traitement du cancer.Les interactions protéine-protéine sont considérées comme des réactions enzymatiques. On présente quelques résultats mathématiques pour les réactions enzymatiques, en particulier on étudie le comportement en temps grand du système de réaction-diffusion pour la réaction enzymatique réversible à l'aide d'une approche entropique. À notre connaissance, c'est la première fois qu'une telle étude est publiée sur ce sujet
Various molecular pharmacokinetic–pharmacodynamic models have been proposed in the last decades to represent and predict drug effects in anticancer therapies. Most of these models are cell population based models since clearly measurable effects of drugs can be seen on populations of (healthy and tumour) cells much more easily than in individual cells.The actual targets of drugs are, however, cells themselves. The drugs in use either disrupt genome integrity by causing DNA strand breaks and consequently initiate programmed cell death or block cell proliferation mainly by inhibiting proteins (cdks) that enable cells to proceed from one cell cycle phase to another. DNA damage caused by cytotoxic drugs or $\gamma$-irradiation activates, among others, the p53 protein-modulated signalling pathways that directly or indirectly force the cell to make a decision between survival and death.The thesis aims to explore closely intracellular pathways involving p53, ``the guardian of the genome", initiated by DNA damage and thus to provide oncologists with a rationale to predict and optimise the effects of anticancer drugs in the clinic. It describes p53 activation and regulation in single cells following their exposure to DNA damaging agents. We show that dynamical patterns that have been observed in individual cells can be reconstructed and predicted by compartmentalisation of cellular events occurring either in the nucleus or in the cytoplasm, and by describing protein interactions, using both ordinary and partial differential equations, among several key antagonists including ATM, p53, Mdm2 and Wip1, in each compartment and in between them. Recently observed positive role of Mdm2 in the synthesis of p53 is explored and a novel mechanism triggering oscillations is proposed. For example, new model can explain experimental observations that previous (not only our) models could not, e.g., excitability of p53.Using mathematical methods we look closely on how a stimulus (e.g., $\gamma$-radiation or drugs used in chemotherapy) is converted to a specific (spatio-temporal) pattern of p53 whereas such specific p53 dynamics as a transmitter of cellular information can modulate cellular outcomes, e.g., cell cycle arrest or apoptosis. Mathematical ODE and reaction-diffusion PDE models are thus used to see how the (spatio-temporal) behaviour of p53 is shaped and what possible applications in cancer treatment this behaviour might have. Protein-protein interactions are considered as enzyme reactions. We present some mathematical results for enzyme reactions, among them the large-time behaviour of the reaction-diffusion system for the reversible enzyme reaction treated by an entropy approach. To our best knowledge this is published for the first time
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Gaillard, Philippe. "Applications de la théorie de Galois différentielle aux équations différentielles linéaires d'ordre 4". Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00008234.

Texto completo da fonte
Resumo:
Pour les équations différentielles ordinaires linéaires d'ordre 2 et 3, des algorithmes de résolution exacte avec des temps de calcul réalistes existent, se fondant sur une étude préalable précise des groupes de Galois différentiels potentiels de ces équations. Plusieurs études de l'ordre 4 ont déjà eu lieu mais ne concernaient qu'un aspect particulier de la classification des groupes. Dans cette thèse, on donne les bornes optimales pour le degré du polynôme minimal des dérivées logarithmiques des solutions liouvilliennes de telles équations (travail commun avec D. Boucher et F. Ulmer) puis on présente une stratégie algorithmique de recherche du groupe de Galois différentiel d'une équation en connaissant ses semiinvariants de degré 2 et 4, obtenue après avoir en particulier complété les travaux précédents par les cas imprimitif-monomial de la classification des groupes. On trouve alors plus efficacement des semi-invariants produits de formes linéeaires. Dans le chapitre 4 de cette thèse, on s'intérresse aux chutes d'ordre de la puissance symétrique quatrième d'une équation. Plus précisément, on montre qu'une chute d'ordre de un implique l'existence d'au moins un semi-invariant de degré 4, ce qui permet d'obtenir des informations sur le groupe de l'équation. En cas de chute d'ordre de deux et plus, des conditions de finitude du groupe sont données par un théorème de M.F. Singer. Dans le chapitre 5, on traite deux exemples. Dans le premier, on applique la stratégie algorithmique décrite dans le chapitre 3 en vue de trouver le groupe de Galois diff érentiel d'une équation dont on calcule ensuite les solutions (à l'aide d'une méthode décrite par F. Ulmer). Le second est un exemple de résolution du problème inverse pour le groupe SO(4, C) à l'aide de la méthode décrite par C. Mitschi et M.F. Singer (équation qui n'admet donc pas de solutions liouvilliennes). On trouvera en annexe la liste explicite des semiinvariants de degré 2 et 4 des sous-groupes monomiaux de SL(4, C).
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Gallois, Thibaut-Hugues. "Amélioration de la rapidité d'exécution des systèmes EDO de grande taille issus de Modelica". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC023/document.

Texto completo da fonte
Resumo:
L'étude des systèmes aux équations différentielles ordinaires vise à prédire le futur des systèmes considérés. La connaissance de l'évolution dans le temps de toutes les variables d' état du modèle permet de prédire de possibles changements radicaux des variables ou des défaillances, par exemple, un moteur peut exploser, un pont peut s'écrouler, une voiture peut se mettre à consommer plus d'essence. De plus, les systèmes dynamiques peuvent contenir des dérivées spatiales et leur discrétisation peut ajouter un très grand nombre d'équations. La résolution des équations différentielles ordinaires est alors une étape essentielle dans la construction des systèmes physiques en terme de dimensionnement et de faisabilité. Le solveur de tels systèmes EDOs doit être rapide, précis et pertinent.En pratique, il n'est pas possible de trouver une fonction continue qui soit solution exacte du problème EDO. C'est pourquoi, des méthodes numériques sont utilisées afin de donner des solutions discrèes qui approchent la solution continue avec une erreur contrôlable. La gestion précise de ce contrôle est très importante afin d'obtenir une solution pertinente en un temps raisonnable.Cette thèse développe un nouveau solveur qui utilise plusieurs méthodes d'amélioration de la vitesse d'exécution des systèmes EDOs. La première méthode est l'utilisation d'un nouveau schéma numérique. Le but est de minimiser le coût de l'intégration en produisant une erreur qui soit le plus proche possible de la tolérance maximale permise par l'utilisateur du solveur. Une autre méthode pour améliorer la vitesse d'exécution est de paralléliser le solveur EDO en utilisant une architecture multicoeur et multiprocesseur. Enfin, le solveur a été testé avec différentes applications d'OpenModelica
The study of systems of Ordinary Differential Equations aims at predicting the future of the considered systems. The access to the evolution of all states of a system's model allows us to predict possible drastic shifts of the states or failures, e.g. an engine blowing up, a bridge collapsin, a car consuming more gasoline etc. Solving ordinary differential equations is then an essential step of building industrial physical systems in regard to dimensioning and reliability. The solver of such ODE systems needs to be fast, accurate and relevant.In practice, it is not possible to find a continuous function as the exact solution of the real ODE problem. Consequently numerical methods are used to give discrete solutions which approximates the continuous one with a controllable error. The correct handline of this control is very important to get a relevant solution within an acceptable recovery time. Starting from existing studies of local and global errors, this thesis work goes more deeply and adjusts the time step of the integration time algorithm and solves the problem in a very efficient manner.A new scheme is proposed is this thesis, to minimize the cost of integration. Another method to improve the execution speed is to parallelize the ODE solver by using a multicore and a multiprocessor architecture. Finally, the solver has been tested with different applications from OpenModelica
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Eichenmüller, Gérard. "Réduction et intégration symbolique des systèmes d'équations différentielles non-linéaires". Phd thesis, Université Joseph Fourier (Grenoble), 2000. http://tel.archives-ouvertes.fr/tel-00006744.

Texto completo da fonte
Resumo:
Cette thèse traite de l'intégration et de la réduction symbolique des systèmes d'équations différentielles ordinaires non-linéaires autonomes. Ces systèmes sont étudiés localement au voisinage d'un point simple ou singulier. Pour réduire ces systèmes à une forme intégrable, nous utilisons des transformations telles que les transformations quasi-monomiales, les éclatements et des constructions de formes normales. Ces méthodes permettent d'intégrer tout système à deux dimensions et des systèmes non-nilpotents à trois dimensions. Pour les systèmes nilpotents en trois dimensions et les systèmes de dimension supérieure nous rencontrons de nouvelles difficultés. La forme des cônes contenant le support de tels systèmes peut être très compliquée et cela complique l'utilisation des algorithmes introduits précédemment. Nous proposons alors une autre approche, basée sur une extension du diagramme de Newton et permettant de résoudre ces systèmes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Testard, Laurent. "Calculs et visualisation en nombres complexes". Phd thesis, Grenoble INPG, 1997. http://tel.archives-ouvertes.fr/tel-00004965.

Texto completo da fonte
Resumo:
Le but de cette thèse est de fournir des moyens de calcul et de visualisation d'objets mathématiques issus de l'analyse complexe. Dans ce cadre, de nombreux problèmes d'origine mathématique empêchent d'utiliser les nombres complexes aussi naturellement que les nombres réels : indéterminations dans les calculs, nombre élevé de dimensions empêchant les méthodes naïves de visualisation, phénomènes multiformes. Au niveau calcul, quelques méthodes ont été étudiées, menant à la définition d'un modèle de programmation permettant de gérer les indéterminations. Au niveau visualisation, des méthodes adaptées aux objets mathématiques complexes ont été mises au point, en particulier dans le cadre des solutions d'équations différentielles complexes. Toutes ces méthodes (calcul, visualisation) ont été implémentées sous forme de modules dans un environnement commun permettant le prototypage rapide d'expériences, axées notamment sur un couplage entre calcul et visualisation. Les différentes applications présentées dans le document (intégration numérique d'équations différentielles avec des fonctions multiformes, visualisation de solutions d'équations différentielles complexes, visualisation de l'erreur globale estimée pendant une intégration) y ont été intégrées.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Blavy, Pierre. "Identification des éléments clefs du métabolisme des lipides et de leurs régulateurs". Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00541207.

Texto completo da fonte
Resumo:
La quantité totale de lipides et la composition en acides gras participent au déterminisme de la qualité des produits carnés et jouent un rôle dans de nombreuses pathologies. Par conséquent la maitrise du métabolisme des lipides constitue un important enjeu industriel et de santé publique. De nombreuses données expérimentales et bibliographiques sont actuellement disponibles sur le métabolisme des lipides dans différentes espèces. Néamoins, la hiérarchie d'importance des voies métaboliques et les régulateurs clefs de ce métabolisme dans différentes conditions expérimentales restent mal connus. Cette these propose d'utiliser les outils de la modélisation pour intégrer les données disponibles sur le métabolisme des lipides et des acides gras. Pour cela, deux modèles complémentaires ont été développés : un modèle dynamique simple comprenant le minimum de fonctions biologiques et de régulations nécessaire pour expliquer des données expérimentales métaboliques, et un modèle à large échelle comprenant un maximum d'informations issues des bases de données de connaissances. Le premier est un ensemble d'équations différentielles ordinaires décrivant les principales voies biochimiques du métabolisme des lipides indépendamment de l'espèce, de l'organe et des conditions expérimentales. Ce modèle a été confronté aux données biologiques décrivant les variations des acides gras dans le foie et le tissu adipeux lors de 72 heures de mise à jeun chez des souris de génotype sauvages et knockout pour PPARα (un facteur de transcription responsable notamment de l'activation de l'oxydation des acides gras). Nous mettons ainsi en évidence l'importance de la captation des acides gras sanguins par le foie, de l'oxydation hépatique des acides gras mais aussi et de maniere plus surprenante, des voies de désaturation et élongation des acides gras actives meme chez l'animal a jeun. L'existence d'un régulateur inconnu de l'élongation-désaturation des acides gras autre que PPARα est également suggérée. Le second modèle est un graphe d'influence qui réunit un maximum d'informations bibliogra- phiques pour les croiser avec des données transcriptomiques obtenues à haut débit. L'analyse de trois bases de connaissances bibliographiques (Gardon, une base interne experte ; TRANSPATH et Ingenuity, deux bases commerciales) a permis de mettre en évidence une forte complémenta- rité de la bibliographie extraite et des influences exploitables qu'elles référencent. Suite à cette analyse un graphe d'influence a été construit et l'analyse de sa topologie a permis de mettre en évidence les éléments les plus connectés possédant un lien avec le métabolisme énergétique. Ces deux démarches ont souligné l'intéret de la modélisation pour mettre en exergue des voies connues mais aussi inconnues, et suggérer ainsi de nouvelles expérimentations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Wu, Dawen. "Solving Some Nonlinear Optimization Problems with Deep Learning". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG083.

Texto completo da fonte
Resumo:
Cette thèse considère quatre types de problèmes d'optimisation non linéaire, à savoir les jeux de bimatrice, les équations de projection non linéaire (NPEs), les problèmes d'optimisation convexe non lisse (NCOPs) et les jeux à contraintes stochastiques (CCGs). Ces quatre classes de problèmes d'optimisation non linéaire trouvent de nombreuses applications dans divers domaines tels que l'ingénierie, l'informatique, l'économie et la finance. Notre objectif est d'introduire des algorithmes basés sur l'apprentissage profond pour calculer efficacement les solutions optimales de ces problèmes d'optimisation non linéaire.Pour les jeux de bimatrice, nous utilisons des réseaux neuronaux convolutionnels (CNNs) pour calculer les équilibres de Nash. Plus précisément, nous concevons une architecture de CNN où l'entrée est un jeu de bimatrice et la sortie est l'équilibre de Nash prédit pour le jeu. Nous générons un ensemble de jeux de bimatrice suivant une distribution de probabilité donnée et utilisons l'algorithme de Lemke-Howson pour trouver leurs véritables équilibres de Nash, constituant ainsi un ensemble d'entraînement. Le CNN proposé est formé sur cet ensemble de données pour améliorer sa précision. Une fois l'apprentissage terminée, le CNN est capable de prédire les équilibres de Nash pour des jeux de bimatrice inédits. Les résultats expérimentaux démontrent l'efficacité computationnelle exceptionnelle de notre approche basée sur CNN, au détriment de la précision.Pour les NPEs, NCOPs et CCGs, qui sont des problèmes d'optimisation plus complexes, ils ne peuvent pas être directement introduits dans les réseaux neuronaux. Par conséquent, nous avons recours à des outils avancés, à savoir l'optimisation neurodynamique et les réseaux neuronaux informés par la physique (PINNs), pour résoudre ces problèmes. Plus précisément, nous utilisons d'abord une approche neurodynamique pour modéliser un problème d'optimisation non linéaire sous forme de système d'équations différentielles ordinaires (ODEs). Ensuite, nous utilisons un modèle basé sur PINN pour résoudre le système d'ODE résultant, où l'état final du modèle représente la solution prédite au problème d'optimisation initial. Le réseau neuronal est formé pour résoudre le système d'ODE, résolvant ainsi le problème d'optimisation initial. Une contribution clé de notre méthode proposée réside dans la transformation d'un problème d'optimisation non linéaire en un problème d'entraînement de réseau neuronal. En conséquence, nous pouvons maintenant résoudre des problèmes d'optimisation non linéaire en utilisant uniquement PyTorch, sans compter sur des solveurs d'optimisation convexe classiques tels que CVXPY, CPLEX ou Gurobi
This thesis considers four types of nonlinear optimization problems, namely bimatrix games, nonlinear projection equations (NPEs), nonsmooth convex optimization problems (NCOPs), and chance-constrained games (CCGs).These four classes of nonlinear optimization problems find extensive applications in various domains such as engineering, computer science, economics, and finance.We aim to introduce deep learning-based algorithms to efficiently compute the optimal solutions for these nonlinear optimization problems.For bimatrix games, we use Convolutional Neural Networks (CNNs) to compute Nash equilibria.Specifically, we design a CNN architecture where the input is a bimatrix game and the output is the predicted Nash equilibrium for the game.We generate a set of bimatrix games by a given probability distribution and use the Lemke-Howson algorithm to find their true Nash equilibria, thereby constructing a training dataset.The proposed CNN is trained on this dataset to improve its accuracy. Upon completion of training, the CNN is capable of predicting Nash equilibria for unseen bimatrix games.Experimental results demonstrate the exceptional computational efficiency of our CNN-based approach, at the cost of sacrificing some accuracy.For NPEs, NCOPs, and CCGs, which are more complex optimization problems, they cannot be directly fed into neural networks.Therefore, we resort to advanced tools, namely neurodynamic optimization and Physics-Informed Neural Networks (PINNs), for solving these problems.Specifically, we first use a neurodynamic approach to model a nonlinear optimization problem as a system of Ordinary Differential Equations (ODEs).Then, we utilize a PINN-based model to solve the resulting ODE system, where the end state of the model represents the predicted solution to the original optimization problem.The neural network is trained toward solving the ODE system, thereby solving the original optimization problem.A key contribution of our proposed method lies in transforming a nonlinear optimization problem into a neural network training problem.As a result, we can now solve nonlinear optimization problems using only PyTorch, without relying on classical convex optimization solvers such as CVXPY, CPLEX, or Gurobi
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Santos, Peretta Igor. "Evolution de modèles différentiels de systèmes complexes concrets par programmation génétique". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD031/document.

Texto completo da fonte
Resumo:
Un système est défini par les entités et leurs interrelations dans un environnement qui est déterminé par une limite arbitraire. Les systèmes complexes présentent un comportement émergent sans un contrôleur central. Les systèmes concrets désignent ceux qui sont observables dans la réalité. Un modèle nous permet de comprendre, de contrôler et de prédire le comportement du système. Un modèle différentiel à partir d'un système pourrait être compris comme une sorte de loi physique sous-jacent représenté par l'un ou d'un ensemble d'équations différentielles. Ce travail vise à étudier et mettre en œuvre des méthodes pour effectuer la modélisation des systèmes automatisée par l'ordinateur. Cette thèse pourrait être divisée en trois étapes principales, ainsi: (1) le développement d'un solveur numérique automatisé par l'ordinateur pour les équations différentielles linéaires, partielles ou ordinaires, sur la base de la formulation de matrice pour une personnalisation propre de la méthode Ritz-Galerkin; (2) la proposition d'un schème de score d'adaptation qui bénéficie du solveur numérique développé pour guider l'évolution des modèles différentiels pour les systèmes complexes concrets; (3) une implémentation préliminaire d'une application de programmation génétique pour effectuer la modélisation des systèmes automatisée par l'ordinateur. Dans la première étape, il est montré comment le solveur proposé utilise les polynômes de Jacobi orthogonaux comme base complète pour la méthode de Galerkin et comment le solveur traite des conditions auxiliaires de plusieurs types. Solutions à approximations polynomiales sont ensuite réalisés pour plusieurs types des équations différentielles partielles linéaires, y compris les problèmes hyperboliques, paraboliques et elliptiques. Dans la deuxième étape, le schème de score d'adaptation proposé est conçu pour exploiter certaines caractéristiques du solveur proposé et d'effectuer l'approximation polynômiale par morceaux afin d'évaluer les individus différentiels à partir d'une population fournie par l'algorithme évolutionnaire. Enfin, une mise en œuvre préliminaire d'une application GP est présentée et certaines questions sont discutées afin de permettre une meilleure compréhension de la modélisation des systèmes automatisée par l'ordinateur. Indications pour certains sujets prometteurs pour la continuation de futures recherches sont également abordées dans ce travail, y compris la façon d'étendre ce travail à certaines classes d'équations différentielles partielles non-linéaires
A system is defined by its entities and their interrelations in an environment which is determined by an arbitrary boundary. Complex systems exhibit emergent behaviour without a central controller. Concrete systems designate the ones observable in reality. A model allows us to understand, to control and to predict behaviour of the system. A differential model from a system could be understood as some sort of underlying physical law depicted by either one or a set of differential equations. This work aims to investigate and implement methods to perform computer-automated system modelling. This thesis could be divided into three main stages: (1) developments of a computer-automated numerical solver for linear differential equations, partial or ordinary, based on the matrix formulation for an own customization of the Ritz-Galerkin method; (2) proposition of a fitness evaluation scheme which benefits from the developed numerical solver to guide evolution of differential models for concrete complex systems; (3) preliminary implementations of a genetic programming application to perform computer-automated system modelling. In the first stage, it is shown how the proposed solver uses Jacobi orthogonal polynomials as a complete basis for the Galerkin method and how the solver deals with auxiliary conditions of several types. Polynomial approximate solutions are achieved for several types of linear partial differential equations, including hyperbolic, parabolic and elliptic problems. In the second stage, the proposed fitness evaluation scheme is developed to exploit some characteristics from the proposed solver and to perform piecewise polynomial approximations in order to evaluate differential individuals from a given evolutionary algorithm population. Finally, a preliminary implementation of a genetic programming application is presented and some issues are discussed to enable a better understanding of computer-automated system modelling. Indications for some promising subjects for future continuation researches are also addressed here, as how to expand this work to some classes of non-linear partial differential equations
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Meslem, Nacim. "Atteignabilité hybride des systèmes dynamiques continus par analyse par intervalles : application à l'estimation ensembliste". Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00461673.

Texto completo da fonte
Resumo:
Cette thèse porte sur le calcul d'une sur-approximation conservative pour les solutions d'équations différentielles ordinaires en présence d'incertitudes et sur son application à l'estimation et l'analyse de systèmes dynamiques à temps continu. L'avantage principal des méthodes et des algorithmes de calculs présentés dans cette thèse est qu'ils apportent une preuve numérique de résultats. Cette thèse est organisée en deux parties. La première partie est consacrée aux outils mathématiques et aux méthodes d'intégration numérique garantie des équations diff érentielles incertaines. Ces méthodes permettent de caractériser de manière garantie l'ensemble des trajectoires d'état engendrées par un système dynamique incertain dont les incertitudes sont naturellement représentées par des intervalles bornés. Dans cette optique, nous avons développé une méthode d'intégration hybride qui donne de meilleurs résultats que les méthodes d'intégration basées sur les modèles de Taylor intervalles. La seconde partie aborde les problèmes de l'identification et de l'observation dans un contexte à erreurs bornées ainsi que le problème d'atteignabilité continue pour la véri cation de propriétés des systèmes dynamiques hybrides.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ouaari, Amel. "Modèles paramétriques de processus de branchement uni et multi-types". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS109/document.

Texto completo da fonte
Resumo:
L'objet de cette thèse concerne la proposition de modèles paramétriques des processus de branchement uni et multi-types. Nous mettons en valeur l’intérêt de la théorie des processus de branchement et du développement nécessaire des différents outils et de concepts propres à plusieurs domaines. Pour cela, nous commençons par rappeler quelques définitions et résultats de la théorie des processus de branchement uni et multi-types, et ce en temps discret comme en temps continu. On se consacre par la suite au développement méthodologique de ces modèles.Dans la deuxième partie de ce mémoire, nous étudions seulement l'évolution d’une seule population en temps continu, et présentons quelques familles de lois paramétriques, associées à des processus de branchement homogènes particuliers. Des méthodes récursives de calcul, ainsi que des propriétés pertinentes, concernant ces distributions de probabilité, sont dérivées des fonctions génératrices satisfaisant certaines équations aux dérivées partielles linéaires précisés. Les familles proposées seront utiles à la modélisation de systèmes plus cohérents en dynamique de populations, puisqu'on y montre que les hypothèses usuelles de distributions de Poisson ne peuvent être argumentées.Dans la troisième partie, nous étudions le comportement de l'évolution de plusieurs populations en interactions. Nous y présentons aussi des modèles paramétriques de lois, associés à des processus de branchement multi-types en temps continu et homogènes en temps. Nous considérons ensuite un modèle particulier, où une population ``mère donneuse" autonome alimente en individus K populations filles, qui sont, elles, en interaction. Ce modèle est bien adapté à l'étude des systèmes dynamiques des populations en interaction qui reste à la fois simple, mais riche en variétés de comportement. L'étude du système multi-types se fait via l'évolution des fonctions génératrices de la loi multidimensionnelles des effectifs. Pour cela, utilisant les équations différentielles ordinaires et aux dérivées partielles, nous établissons les équations implicites des distributions temporelles et multidimensionnelles, et discutons des méthodes analytiques ou numériques de leur résolution. Nous développons ensuite des exemples de modèles et en particulier celui concernant 3 et 4 populations.En conclusion, nous argumentons la pertinence de cette approche, et l’interprétation des paramètres, qui sont d'un grand intérêt pour le développement de méthodes d'inférence statistique, pour de nombreux domaines d'applications
This thesis aims to propose parametric models for single and multi-type branching processes. The importance of the theory of branching processes is pointed out. Hence, developing various tools and specific concepts in several domains is important for applications. For those purpose, we recall some definitions and results of the single-and-multi-type branching processes theory in discrete and continuous case. Afterward, we focus on the methodological development of those models.In the second part, the evolution of a single population in the continuous case has been studied. Then, some parametric distribution families associated to particular branching mechanisms are explored. Recursive computational procedure and relevant properties concerning the associted probability distributions are derived from generating functions that satisfy specified linear partial differential equations. The suggested families are useful for the modeling of systems that are more coherent with population dynamics, contrarily to the usual hypothesis of Poisson distributions, that cannot be argued.In the third part, the evolution of different populations with interaction is explored. Similarly, some parametric models of homogeneous multi-type branching processes in continuous time are proposed. Afterwards, we consider a particular model where an autonomous donor parent population feeds in individuals, K types progeny populations that interacts. This model is well adapted to the study of dynamical systems of populations in interaction. This simple model, but has a rich variety of behaviors.The study of such systems is also done regarding the evolution of generating functions of multidimensional ndividual countrings. To achievea such study, ordinary and partial differential equations are used to establish the implicit equations of temporal and multidimensional distributions. Analytical and numerical methods for equation resolution are then discussed, and examples of particular models are developed.In conclusion, the relevancy of this approach is argumed, censidering parameters interpretation in the development of inference methods for the various applied domains
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Jacquier, Marine. "Mathematical modeling of the hormonal regulation of food intake and body weight : applications to caloric restriction and leptin resistance". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1027/document.

Texto completo da fonte
Resumo:
Réguler la prise alimentaire et la dépense énergétique permet en général de limiter d'importants changements de poids corporel. Hormones (leptine, ghréline, insuline) et nutriments sont impliqués dans ces régulations. La résistance à la leptine, souvent associée à l'obésité, limite la régulation de la prise alimentaire. La modélisation mathématique de la dynamique du poids contribue en particulier à une meilleure compréhension des mécanismes de régulation (notamment chez l’humain). Or les régulations hormonales sont largement ignorées dans les modèles existants.Dans cette thèse, nous considérons un modèle de régulation hormonale du poids appliqué aux rats, composé d'équations différentielles non-linéaires. Il décrit la dynamique de la prise alimentaire, du poids et de la dépense énergétique, régulés par la leptine, la ghréline et le glucose. Il reproduit et prédit l'évolution du poids et de la prise alimentaire chez des rats soumis à différents régimes hypocaloriques, et met en évidence l'adaptation de la dépense énergétique. Nous introduisons ensuite le premier modèle décrivant le développement de la résistance à la leptine, prenant en compte la régulation de la prise alimentaire par la leptine et ses récepteurs. Nous montrons que des perturbations de la prise alimentaire, ou de la concentration en leptine, peuvent rendre un individu sain résistant à la leptine et obèse. Enfin, nous présentons une simplification réaliste de la dynamique du poids dans ces modèles, permettant de construire un nouveau modèle combinant les deux modèles précédents
The regulation of food intake and energy expenditure usually limits important loss or gain of body weight. Hormones (leptin, ghrelin, insulin) and nutrients (glucose, triglycerides) are among the main regulators of food intake. Leptin is also involved in leptin resistance, often associated with obesity and characterized by a reduced efficacy to regulate food intake. Mathematical models describing the dynamics of body weight have been used to assist clinical weight loss interventions or to study an experimentally inaccessible phenomenon, such as starvation experiments in humans. Modeling of the effect of hormones on body weight has however been largely ignored.In this thesis, we first consider a model of body weight regulation by hormones in rats, made of nonlinear differential equations. It describes the dynamics of food intake, body weight and energy expenditure, regulated by leptin, ghrelin and glucose. It is able to reproduce and predict the evolution of body weight and food intake in rats submitted to different patterns of caloric restriction, showing the importance of the adaptation of energy expenditure. Second, we introduce the first model of leptin resistance development, based on the regulation of food intake by leptin and leptin receptors. We show that healthy individuals may become leptin resistant and obese due to perturbations in food intake or leptin concentration. Finally, modifications of these models are presented, characterized by simplified yet realistic body weight dynamics. The models prove able to fit the previous, as well as new sets of experimental data and allow to build a complete model combining both previous models regulatory mechanisms
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Kurbatova, Polina. "Modélisation hybride de l'érythropoïèse et des maladies sanguines". Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00752835.

Texto completo da fonte
Resumo:
La thèse est consacrée au développement de nouvelles méthodes de modélisations mathématiques en biologie et en médecine, du type "off-lattice" modèles hybrides discret-continus, et de leurs applications à l'hématopoïèse et aux maladies sanguines telles la leucémie et l'anémie. Dans cette approche, les cellules biologiques sont considérées comme des objets discrets alors que les réseaux intracellulaire et extracellulaire sont décrits avec des modèles continus régis par des équations aux dérivées partielles et des équations différentielles ordinaires. Les cellules interagissent mécaniquement et biochimiquement entre elles et avec le milieu environnant. Elles peuvent se diviser, mourir par apoptose ou se différencier. Le comportement des cellules est déterminé par le réseau de régulation intracellulaire et influencé par le contrôle local des cellules voisines ou par la régulation globale d'autres organes. Dans la première partie de la thèse, les modèles hybrides du type "off-lattice" dynamiques sont introduits. Des exemples de modèles, spécifiques aux processus biologiques, qui décrivent au sein de chaque cellule la concurrence entre la prolifération et l'apoptose, la prolifération et la différenciation et entre le cycle cellulaire et de l'état de repos sont étudiés. L'émergence des structures biologiques est étudiée avec les modèles hybrides. L'application à la modélisation des filamente de bactéries est illustrée. Dans le chapitre suivant, les modèle hybrides sont appliqués afin de modéliser l'érythropoïèse ou production de globules rouges dans la moelle osseuse. Le modèle inclut des cellules sanguines immatures appelées progéniteurs érythroïdes, qui peuvent s'auto-renouveler, se différencier ou mourir par apoptose, des cellules plus matures appelées les réticulocytes, qui influent les progéniteurs érythroïdes par le facteur de croissance Fas-ligand, et des macrophages, qui sont présents dans les îlots érythroblastiques in vivo. Les régulations intracellulaire et extracellulaire par les protéines et les facteurs de croissance sont précisées et les rétrocontrôles par les hormones érythropoïétine et glucocorticoïdes sont pris en compte. Le rôle des macrophages pour stabiliser les îlots érythroblastiques est montré. La comparaison des résultats de modélisation avec les expériences sur l'anémie chez les souris est effectuée. Le quatrième chapitre est consacré à la modélisation et au traitement de la leucémie. L'érythroleucémie, un sous-type de leucémie myéloblastique aigüe (LAM), se développe à cause de la différenciation insuffisante des progéniteurs érythroïdes et de leur auto-renouvellement excessif. Un modèle de type "Physiologically Based Pharmacokinetics-Pharmacodynamic" du traitement de la leucémie par AraC et un modèle de traitement chronothérapeutique de la leucémie sont examinés. La comparaison avec les données cliniques sur le nombre de blast dans le sang est effectuée. Le dernier chapitre traite du passage d'un modèle hybride à un modèle continu dans le cas 1D. Un théorème de convergence est prouvé. Les simulations numériques confirment un bon accord entre ces deux approches.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Kurbatova, Polina. "Modélisation hybride de l’érythropoïèse et des maladies sanguines". Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10258/document.

Texto completo da fonte
Resumo:
La thèse est consacrée au développement de nouvelles méthodes de modélisations mathématiques en biologie et en médecine, du type “off-lattice" modèles hybrides discret-continus, et de leurs applications à l’hématopoïèse et aux maladies sanguines telles la leucémie et l’anémie. Dans cette approche, les cellules biologiques sont considérées comme des objets discrets alors que les réseaux intracellulaire et extracellulaire sont décrits avec des modèles continus régis par des équations aux dérivées partielles et des équations différentielles ordinaires. Les cellules interagissent mécaniquement et biochimiquement entre elles et avec le milieu environnant. Elles peuvent se diviser, mourir par apoptose ou se différencier. Le comportement des cellules est déterminé par le réseau de régulation intracellulaire et influencé par le contrôle local des cellules voisines ou par la régulation globale d’autres organes. Dans la première partie de la thèse, les modèles hybrides du type “off-lattice" dynamiques sont introduits. Des exemples de modèles, spécifiques aux processus biologiques, qui décrivent au sein de chaque cellule la concurrence entre la prolifération et l’apoptose, la prolifération et la différenciation et entre le cycle cellulaire et de l’état de repos sont étudiés. L’émergence des structures biologiques est étudiée avec les modèles hybrides. L’application à la modélisation des filamente de bactéries est illustrée. Dans le chapitre suivant, les modèle hybrides sont appliqués afin de modéliser l’érythropoïèse ou production de globules rouges dans la moelle osseuse. Le modèle inclut des cellules sanguines immatures appelées progéniteurs érythroïdes, qui peuvent s’auto-renouveler, se différencier ou mourir par apoptose, des cellules plus matures appelées les réticulocytes, qui influent les progéniteurs érythroïdes par le facteur de croissance Fas-ligand, et des macrophages, qui sont présents dans les îlots érythroblastiques in vivo. Les régulations intracellulaire et extracellulaire par les protéines et les facteurs de croissance sont précisées et les rétrocontrôles par les hormones érythropoïétine et glucocorticoïdes sont pris en compte. Le rôle des macrophages pour stabiliser les îlots érythroblastiques est montré. La comparaison des résultats de modélisation avec les expériences sur l’anémie chez les souris est effectuée. Le quatrième chapitre est consacré à la modélisation et au traitement de la leucémie. L’érythroleucémie, un sous-type de leucémie myéloblastique aigüe (LAM), se développe à cause de la différenciation insuffisante des progéniteurs érythroïdes et de leur auto-renouvellement excessif. Un modèle de type “Physiologically Based Pharmacokinetics-Pharmacodynamic” du traitement de la leucémie par AraC et un modèle de traitement chronothérapeutique de la leucémie sont examinés. La comparaison avec les données cliniques sur le nombre de blast dans le sang est effectuée. Le dernier chapitre traite du passage d’un modèle hybride à un modèle continu dans le cas 1D. Un théorème de convergence est prouvé. Les simulations numériques confirment un bon accord entre ces deux approches
This dissertation is devoted to the development of new methods of mathematical modeling in biology and medicine, off-lattice discrete-continuous hybrid models, and their applications to modelling of hematopoiesis and blood disorders, such as leukemia and anemia. In this approach, biological cells are considered as discrete objects while intracellular and extracellular networks are described with continuous models, ordinary or partial differential equations. Cells interact mechanically and biochemically between each other and with the surrounding medium. They can divide, die by apoptosis or differentiate. Their fate is determined by intracellular regulation and influenced by local control from the surrounding cells or by global regulation from other organs. In the first part of the thesis, hybrid models with off-lattice cell dynamics are introduced. Model examples specific for biological processes and describing competition between cell proliferation and apoptosis, proliferation and differentiation and between cell cycling and quiescent state are investigated. Biological pattern formation with hybrid models is discussed. Application to bacteria filament is illustrated. In the next chapter, hybrid model are applied in order to model erythropoiesis, red blood cell production in the bone marrow. The model includes immature blood cells, erythroid progenitors, which can self-renew, differentiate or die by apoptosis, more mature cells, reticulocytes, which influence erythroid progenitors by means of growth factor Fas-ligand, and macrophages, which are present in erythroblastic islands in vivo. Intracellular and extracellular regulation by proteins and growth factors are specified and the feedback by the hormones erythropoietin and glucocorticoids is taken into account. The role of macrophages to stabilize erythroblastic islands is shown. Comparison of modelling with experiments on anemia in mice is carried out. The following chapter is devoted to leukemia modelling and treatment. Erythroleukemia, a subtype of Acute Myeloblastic Leukemia (AML), develops due to insufficient differentiation of erythroid progenitors and their excessive slef-renewal. A Physiologically Based Pharmacokinetics-Pharmacodynamics (PBPKPD) model of leukemia treatment with AraC drug and chronotherapeutic treatments of leukemia are examined. Comparison with clinical data on blast count in blood is carried out. The last chapter deals with the passage from a hybrid model to a continuous model in the 1D case. A convergence theorem is proved. Numerical simulations confirm a good agreement between these approaches
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

MaÏga, Moussa. "Surveillance préventive des systèmes hybrides à incertitudes bornées". Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2010/document.

Texto completo da fonte
Resumo:
Cette thèse est dédiée au développement d’algorithmes génériques pour l’observation ensembliste de l’état continu et du mode discret des systèmes dynamiques hybrides dans le but de réaliser la détection de défauts. Cette thèse est organisée en deux grandes parties. Dans la première partie, nous avons proposé une méthode rapide et efficace pour le passage ensembliste des gardes. Elle consiste à procéder à la bissection dans la seule direction du temps et ensuite faire collaborer plusieurs contracteurs simultanément pour réduire le domaine des vecteurs d’état localisés sur la garde, durant la tranche de temps étudiée. Ensuite, nous avons proposé une méthode pour la fusion des trajectoires basée sur l'utilisation des zonotopes. Ces méthodes, utilisées conjointement, nous ont permis de caractériser de manière garantie l'ensemble des trajectoires d'état hybride engendrées par un système dynamique hybride incertain sur un horizon de temps fini. La deuxième partie de la thèse aborde les méthodes ensemblistes pour l'estimation de paramètres et pour l'estimation d'état hybride (mode et état continu) dans un contexte à erreurs bornées. Nous avons commencé en premier lieu par décrire les méthodes de détection de défauts dans les systèmes hybrides en utilisant une approche paramétrique et une approche observateur hybride. Ensuite, nous avons décrit deux méthodes permettant d’effectuer les tâches de détection de défauts. Nous avons proposé une méthode basée sur notre méthode d'atteignabilité hybride non linéaire et un algorithme de partitionnement que nous avons nommé SIVIA-H pour calculer de manière garantie l'ensemble des paramètres compatibles avec le modèle hybride, les mesures et avec les bornes d’erreurs. Ensuite, pour l'estimation d'état hybride, nous avons proposé une méthode basée sur un prédicteurcorrecteur construit au dessus de notre méthode d'atteignabilité hybride non linéaire
This thesis is dedicated to the development of generic algorithms for the set-membership observation of the continuous state and the discrete mode of hybrid dynamical systems in order to achieve fault detection. This thesis is organized into two parts. In the first part, we have proposed a fast and effective method for the set-membership guard crossing. It consists in carrying out bisection in the time direction only and then makes several contractors working simultaneously to reduce the domain of state vectors located on the guard during the study time slot. Then, we proposed a method for merging trajectories based on zonotopic enclosures. These methods, used together, allowed us to characterize in a guaranteed way the set of all hybrid state trajectories generated by an uncertain hybrid dynamical system on a finite time horizon. The second part focuses on set-membership methods for the parameters or the hybrid state (mode and continuous state) of a hybrid dynamical system in a bounded error framework. We started first by describing fault detection methods for hybrid systems using the parametric approach and the hybrid observer approach. Then, we have described two methods for performing fault detection tasks. We have proposed a method for computing in a guaranteed way all the parameters consistent with the hybrid dynamical model, the actual data and the prior error bound, by using our nonlinear hybrid reachability method and an algorithm for partition which we denote SIVIA-H. Then, for hybrid state estimation, we have proposed a method based on a predictor-corrector, which is also built on top of our non-linear method for hybrid reachability
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Guibert, David. "Analyse de méthodes de résolution parallèles d’EDO/EDA raides". Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10138/document.

Texto completo da fonte
Resumo:
La simulation numérique de systèmes d’équations différentielles raides ordinaires ou algébriques est devenue partie intégrante dans le processus de conception des systèmes mécaniques à dynamiques complexes. L’objet de ce travail est de développer des méthodes numériques pour réduire les temps de calcul par le parallélisme en suivant deux axes : interne à l’intégrateur numérique, et au niveau de la décomposition de l’intervalle de temps. Nous montrons l’efficacité limitée au nombre d’étapes de la parallélisation à travers les méthodes de Runge-Kutta et DIMSIM. Nous développons alors une méthodologie pour appliquer le complément de Schur sur le système linéarisé intervenant dans les intégrateurs par l’introduction d’un masque de dépendance construit automatiquement lors de la mise en équations du modèle. Finalement, nous étendons le complément de Schur aux méthodes de type "Krylov Matrix Free". La décomposition en temps est d’abord vue par la résolution globale des pas de temps dont nous traitons la parallélisation du solveur non-linéaire (point fixe, Newton-Krylov et accélération de Steffensen). Nous introduisons les méthodes de tirs à deux niveaux, comme Parareal et Pita dont nous redéfinissons les finesses de grilles pour résoudre les problèmes raides pour lesquels leur efficacité parallèle est limitée. Les estimateurs de l’erreur globale, nous permettent de construire une extension parallèle de l’extrapolation de Richardson pour remplacer le premier niveau de calcul. Et nous proposons une parallélisation de la méthode de correction du résidu
This PhD Thesis deals with the development of parallel numerical methods for solving Ordinary and Algebraic Differential Equations. ODE and DAE are commonly arising when modeling complex dynamical phenomena. We first show that the parallelization across the method is limited by the number of stages of the RK method or DIMSIM. We introduce the Schur complement into the linearised linear system of time integrators. An automatic framework is given to build a mask defining the relationships between the variables. Then the Schur complement is coupled with Jacobian Free Newton-Krylov methods. As time decomposition, global time steps resolutions can be solved by parallel nonlinear solvers (such as fixed point, Newton and Steffensen acceleration). Two steps time decomposition (Parareal, Pita,...) are developed with a new definition of their grids to solved stiff problems. Global error estimates, especially the Richardson extrapolation, are used to compute a good approximation for the second grid. Finally we propose a parallel deferred correction
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Chambon, Lucie. "Stratégies de contrôle pour des boucles de rétroaction génétiques". Thesis, Université Côte d'Azur, 2020. http://theses.univ-cotedazur.fr/2020COAZ4005.

Texto completo da fonte
Resumo:
Les boucles de rétroaction positives et négatives sont les deux motifs principaux et essentiels de régulation génétique, respectivement responsables de la différenciation cellulaire ainsi que de l’homéostasie et des oscillations biologiques. Elles sont couramment modélisées par des systèmes d’équations différentielles ordinaires non-linéaires dont la dynamique reproduit fidèlement leurs comportements biologiques: la bistabilité pour la boucle positive, et la convergence globale vers une orbite périodique ou un unique point d'équilibre pour la boucle négative. Cette thèse propose plusieurs stratégies mathématiques pour contrôler ces deux motifs avec deux objectifs principaux: la stabilisation globale de points d'équilibre instables et la déstabilisation de points d'équilibre stables pour l’émergence d’oscillations soutenues. Ces deux objectifs semblent intéressants et prometteurs d’un point de vue biologique, notamment pour la mise en place de nouvelles thérapies: pour la boucle négative, ils pourraient permettre une compréhension plus aboutie de certaines maladies liées à la dérégulation de l’homéostasie ou d'horloges biologiques, tandis que pour la boucle positive, ces stratégies pourraient aider à concevoir des processus de dédifférenciation cellulaire. Pour répondre à ces attentes, les différentes lois de contrôle sont adaptées petit à petit afin de respecter plusieurs contraintes expérimentales, dont la nature qualitative et incertaine des données biologiques fournies par les appareils de mesures. Pour cela, plusieurs stratégies de contrôle sont présentées dans ce manuscrit: des contrôles linéaires, des contrôles saturés, des contrôles incertains constants par morceaux, ainsi que des modifications intrinsèques des réseaux. Par conséquent, les systèmes dynamiques étudiés sont non-linéaires et de grande dimension, et certains présentent même des discontinuités dans leur champ de vecteurs pouvant générer des comportements particuliers comme les modes glissants, et pour lesquels la théorie classique sur les systèmes dynamiques monotones et la théorie du contrôle ne s'appliquent pas. Pour cette raison, de nouvelles méthodologies qualitatives, se basant sur la construction de régions répulsives et invariantes, sont présentées et permettent d’établir des résultats de convergence globale et de stabilité au sens de Lyapunov. Ces résultats théoriques sont appuyés par quelques exemples biologiques, dont le Repressilator, le Toggle Switch, la boucle p53-Mdm2 et l'horloge circadienne
Positive and negative genetic feedback loops are two main and essential gene regulatory motifs, respectively responsible for cell differentiation, and the emergence of both homeostasis and biological oscillations. They are accurately modeled by highly non-linear ordinary differential equations whose dynamics properly capture their biological behaviors: bistability for the positive loop, and global convergence towards either a periodic orbit or a unique steady state for the negative loop. This manuscript proposes different mathematical strategies for the control of both loops with two main objectives: the global stabilization of unstable steady states and the destabilization of stable steady states for the emergence of sustained oscillations. From a biological point of view, both objectives seem promising regarding diseases treatments and conception of new therapies: for the negative loop, such a control objective may allow to better understand and cure diseases induced by a dyshomeostasis or a disrupted clock, while for the positive loop, these strategies may help in grasping and conceiving cell dedifferentiation processes. With these biological applications in mind, the control strategies have been successively improved in order to comply with biological implementations and to take into account more and more biological constraints, including qualitative and uncertain information provided by biological measurement techniques. To reflect this progression, different strategies are introduced in this manuscript: affine control laws, saturated control laws, qualitative and uncertain switched control laws, as well as intrinsic synthetic modifications of networks. This results in the analysis of non-linear and high-dimensional dynamical systems, as well as discontinuous right-hand sides systems for which non-classical behaviors such as sliding modes may emerge, and classical theories on control and monotone dynamical systems do not apply. In order to prove global convergence and Lyapunov stability for these non-trivial systems, original, general, and qualitative methodologies based on the construction of successive repelling and invariant regions are developed. These results are supported and illustrated with a few biological examples such as the Toggle Switch, the Repressilator, the p53-Mdm2 loop or the circadian clock
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Testard, Laurent. "Calculs et visualisation en nombres complexes". Phd thesis, Grenoble INPG, 1997. http://www.theses.fr/1997INPG0193.

Texto completo da fonte
Resumo:
Le but de cette thèse est de fournir des moyens de calcul et de visualisation d'objets mathématiques issus de l'analyse complexe. Dans ce cadre, de nombreux problèmes d'origine mathématique empêchent d'utiliser les nombres complexes aussi naturellement que les nombres réels : indéterminations dans les calculs, nombre élevé de dimensions empêchant les méthodes naïves de visualisation, phénomènes multiformes. Au niveau calcul, quelques méthodes ont été étudiées, menant à la définition d'un modèle de programmation permettant de gérer les indéterminations. Au niveau visualisation, des méthodes adaptées aux objets mathématiques complexes ont été mises au point, en particulier dans le cadre des solutions d'équations différentielles complexes. Toutes ces méthodes (calcul, visualisation) ont été implémentées sous forme de modules dans un environnement commun permettant le prototypage rapide d'expériences, axées notamment sur un couplage entre calcul et visualisation. Les différentes applications présentées dans le document (intégration numérique d'équations différentielles avec des fonctions multiformes, visualisation de solutions d'équations différentielles complexes, visualisation de l'erreur globale estimée pendant une intégration) y ont été intégrées
The aim of this thesis is to provide some effective ways to compute and visualize mathematical objects arising in complex analysis. In this scope, many mathematical problems prevent from using complex numbers as naturally as real numbers : indeterminations occuring during computations, high number of dimensions obscuring naive visualization methods, many-valued phenomena. On the computing side, some methods has been studied, leading to the definition of a programming model enabling the detection and the resolution of indeterminations. On the visualization side, methods dealing with the visualization of complex functions have been applied to the visualization of complex Ordinary Differential Equations solutions. These methods have been implemented as modules in a common environment enabling rapid prototypings of experiments, caracterized by a strong coupling of visualization and computations. The different applications presented in this document (numerical integration of differential equations defined by many-valued functions, visualisation of solutions together with the global error estimated during integration) have been developped in this environment
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Viossat, Yannick. "Equilibres corrélés, jeux d'évolution et dynamique de populations". Phd thesis, Ecole Polytechnique X, 2005. http://tel.archives-ouvertes.fr/tel-00012181.

Texto completo da fonte
Resumo:
La thèse se compose de trois parties dont les deux premières se rattachent à la théorie des jeux et la troisième à la biologie théorique. La première partie est consacrée à l'étude des équilibres corrélés. Après avoir étudié les propriétés de la techique de réduction duale et développé ses applications, nous utilisons cette technique pour montrer que l'ensemble des jeux ayant un unique équilibre corrélé est ouvert, ce qui n'est pas vrai des équilibres de Nash, et pour caractériser la classe des jeux dont le polytope des équilibres corrélés contient un équilibre de Nash dans son intérieur relatif. Cette classe étend et généralise celle des jeux à somme nulle. Deux autres contributions sont également présentées.

La deuxième partie est consacrée aux jeux d'évolution, et étudie le lien entre l'issue de processus évolutifs et les concepts stratégiques statiques. Nous montrons notamment que les dynamiques d'évolution peuvent éliminer toutes les stratégies appartennant au support d'au moins un équilibre corrélé, et ce pour n'importe quelle dynamique monotone et pour des ensembles ouverts de jeux et de conditions initiales. L'élimination de toutes les stratégies dans le support des équilibres de Nash se produit sous toutes les dynamiques d'adaptation myope régulières et, sous la dynamique des réplicateurs ou la dynamique de meilleure réponse, à partir de presque toutes les conditions initiales.

La troisième partie, co-écrite, étudie les déterminants de la séparation entre lignée germinale et lignée somatique chez les algues vertes volvocales.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Benosman, Chahrazed. "Contrôle de la Dynamique de la Leucémie Myéloïde Chronique par Imatinib". Phd thesis, Bordeaux 1, 2010. http://tel.archives-ouvertes.fr/tel-00555973.

Texto completo da fonte
Resumo:
Notre travail de recherche concerne la modelisation de l'hematopoese normale et alteree. Les cellules souches hematopoetiques (CSH) sont des cellules indi erenciee qui se trouvent dans la moelle osseuse, et possedent la capacite d'autorenouvellement et de dierenciation. L'hematopoese montre souvent des anomalies qui causent les maladies hematologiques. La leucemie Myelode Chronique (LMC) est un cancer des globules blancs, resultant d'une transformation des chromosomes dans les CSH. En modelisant la LMC, nous decrivons l'evolution des CSH et cellules dierenciees dans la moelle osseuse, par un systeme d'equations dierentielles ordinaires (EDO). L'homeostasie depend de quelques lignees cellulaires, et contr^ole la division des CSH. Nous analysons le comportement asymptotique global du modele, pour obtenir les conditions de regeneration de l'hematopoese normale et la persistance de la LMC. Nous demontrons que les cellules normales et cancereuses ne peuvent pas coexister longtemps. L'imatinib est un traitement principal de la LMC, administre a des dosages variant de 400 a 1000 mg par jour. Les patients repondent a la therapie suivant les niveaux hematologique, cytogenetique et moleculaire. La therapie echoue quand les patients prennent plus de temps pour reagir (reponse suboptimale), ou bien revelent une resistance primaire ou secondaire apres une bonne reponse initiale. La determination du dosage optimal, necessaire a la reduction des cellules cancereuses represente notre objectif. Alors, nous representons les eets de la therapie par des problemes de contr^ole optimal pour minimiser le co^ut du traitement et le nombre des cellules cancereuses. La reponse suboptimale, les resistances primaire et secondaire, et le retablissement des patients, sont obtenus a travers l'in uence de l'imatinib sur la division et la mortalite des cellules cancereuses. En considerant la competition interspecique, nous construisons a partir du systeme d'EDO un modele structure en ^age, decrivant les eets de la therapie sur les CSH cancereuses. Nous etablissons les conditions d'optimalite et demontrons l'existence et l'unicite d'un contr^ole optimal. Le processus d'interaction joue un r^ole important dans la dynamique des CSH normales ; en eet, les CSH lles normales peuvent se stabiliser ou montrer un rebond durant la therapie. Le dosage optimal est soit stable ou oscillant avec le temps, et les CSH lles cancereuses peuvent cro^tre ou osciller. Cette etude contribue signicativement dans l'obtention du dosage optimal lors du traitement de l'hematopoese alteree.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Moulin, Thibault. "Modélisation mathématique de la dynamique des communautés herbacées des écosystèmes prairiaux". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD075/document.

Texto completo da fonte
Resumo:
La modélisation dynamique des systèmes écologiques constitue une méthode incontournable pour comprendre,prédire et contrôler la dynamique des écosystèmes semi-naturels, qui fait intervenir des processuscomplexes. Le principal objectif de cette thèse est de développer un modèle permettant de simuler la dynamiqueà moyen terme de la végétation herbacée dans les prairies permanentes, en tenant compte à lafois de la productivité et de la biodiversité. Les prairies sont des réservoirs présentant une forte biodiversitévégétale, qui soutiennent de nombreux services écosystémiques. Sur le plan agricole, cette importantediversité contribue à la qualité de la production fourragère, et de plus, elle permet une plus grande résistancede la végétation face à des changements climatiques (réchauffement moyen, vagues de chaleur etde sécheresse).Pourtant, cette notion clé de biodiversité n’est que faiblement prise en considération dans la modélisationde l’écosystème prairial : elle est souvent absente ou alors présente sous une forme très simplifiée. Enréponse à ces considérations, ces travaux de thèse présentent la construction d’un modèle de successionbasé sur des processus, décrit par un système d’équations différentielles ordinaires, qui représente ladynamique de la végétation aérienne des prairies tempérées. Ce modèle intègre les principaux facteursécologiques impactant la croissance et la compétition des espèces herbacées, et peut s’ajuster à n’importequel niveau de diversité, par le choix du nombre et de l’identité des espèces initialement présentes dansl’assemblage. Ce formalisme mécaniste de modélisation nous permet alors d’analyser les relations qui lientdiversité, productivité et stabilité, en réponse à différentes conditions climatiques et différents modes degestion agricole.[...]Ces résultats soulignent alors le besoin de prendre en compte le rôle clé joué par la biodiversité dansles modèles de l’écosystème prairial, de par son impact sur le comportement des dynamiques simulées.De plus, pour rendre correctement compte des interactions au sein de la végétation, le nombre d’espècesconsidéré dans le modèle doit être suffisamment important. Enfin, nous comparons les simulations devégétation de ce modèle à des mesures issues de deux sites expérimentaux, la prairie de fauche d’Oensingen,et le pâturage de Laqueuille. Les résultats de ces comparaisons sont encourageants et soulignentla pertinence du choix et de la représentation des processus écologiques clés qui composent ce modèlemécaniste.Ce travail de thèse propose donc un modèle, en total adéquation avec les besoins actuels en terme demodélisation de l’écosystème prairial, qui permet de mieux comprendre la dynamique de la végétationherbacée et les interactions entre productivité, diversité et stabilité
Dynamic modelling of ecological systems is an essential method to understand, predict and control thedynamics of semi-natural ecosystems, which involves complex processes. The main objective of this PhDthesis is to develop a simulation model of the medium- and long-term dynamics of the herbaceous vegetationin permanent grasslands, taking into account both biodiversity and productivity. Grasslandecosystems are often hot spots of biodiversity, which contributes to the temporal stability of their services.On an agricultural perspective, this important biodiversity contributes to the forage quality, andbesides, it induces a higher ability of the vegetation cover to resist to different climatic scenarios (globalwarming, heat and drought waves).However, this key aspect of biodiversity is only poorly included in grassland models : often absent ofmodelling or included in a very simple form. Building on those considerations, this PhD work exposes thewriting of a process-based succession model, described by a system of Ordinary Differential Equationsthat simulates the aboveground vegetation dynamics of a temperate grassland. This model implementedthe main ecological factors involved in growth and competition processes of herbaceous species, and couldbe adjust to any level of diversity, by varying the number and the identity of species in the initial plantcommunity. This formalism of mechanistic models allows us to analyse relationships that link diversity,productivity and stability, in response to different climatic conditions and agricultural management.In mathematical grassland models, plant communities may be represented by a various number of statevariables, describing biomass compartments of some dominant species or plant functional types. The sizeof the initial species pool could have consequences on the outcome of the simulated ecosystem dynamicsin terms of grassland productivity, diversity, and stability. This choice could also influence the modelsensitivity to forcing parameters. To address these issues, we developed a method, based on sensitivityanalysis tools, to compare behaviour of alternative versions of the model that only differ by the identityand number of state variables describing the green biomass, here plant species. This method shows aninnovative aspect, by performing this model sensitivity analysis by using multivariate regression trees. Weassessed and compared the sensitivity of each instance of the model to key forcing parameters for climate,soil fertility, and defoliation disturbances. We established that the sensitivity to forcing parameters ofcommunity structure and species evenness differed markedly among alternative models, according tothe diversity level. We show a progressive shift from high importance of soil fertility (fertilisation level,mineralization rate) to high importance of defoliation (mowing frequency, grazing intensity) as the sizeof the species pool increased.These results highlight the need to take into account the role of species diversity to explain the behaviourof grassland models. Besides, to properly take into account those interactions in the grassland cover, theconsidered species pool size considered in the model needs to be high enough. Finally, we compare modelsimulations of the aboveground vegetation to measures from two experimental sites, the mowing grasslandof Oensingen, and the grazing grassland of Laqueuille. Results of these comparison are promising andhighlight the relevance of the choice and the representation of the different ecological processes includedin this mechanistic model.Thus, this PhD work offers a model, perfectly fitting with current needs on grassland modelling, whichcontribute to a better understanding of the herbaceous vegetation dynamics and interactions betweenproductivity, diversity and stability
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Cyr-Gagnon, Catherine. "Discrétisation des équations différentielles ordinaires avec préservation de leurs symétries". Thèse, 2003. http://hdl.handle.net/1866/14615.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Larivière, François. "Sur les solutions d'équations différentielles de Stieltjes du premier et du deuxième ordre". Thèse, 2018. http://hdl.handle.net/1866/22161.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia