Siga este link para ver outros tipos de publicações sobre o tema: Équations de Poisson-Nernst Planck.

Artigos de revistas sobre o tema "Équations de Poisson-Nernst Planck"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Équations de Poisson-Nernst Planck".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Zheng, Qiong, e Guo-Wei Wei. "Poisson–Boltzmann–Nernst–Planck model". Journal of Chemical Physics 134, n.º 19 (21 de maio de 2011): 194101. http://dx.doi.org/10.1063/1.3581031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Xie, Yan, Jie Cheng, Benzhuo Lu e Linbo Zhang. "Parallel Adaptive Finite Element Algorithms for Solving the Coupled Electro-diffusion Equations". Computational and Mathematical Biophysics 1 (24 de abril de 2013): 90–108. http://dx.doi.org/10.2478/mlbmb-2013-0005.

Texto completo da fonte
Resumo:
Abstractrithms for solving the 3D electro-diffusion equations such as the Poisson-Nernst-Planck equations and the size-modified Poisson-Nernst-Planck equations in simulations of biomolecular systems in ionic liquid. A set of transformation methods based on the generalized Slotboom variables is used to solve the coupled equations. Calculations of the diffusion-reaction rate coefficients, electrostatic potential and ion concentrations for various systems verify the method’s validity and stability. The iterations between the Poisson equation and the Nernst- Planck equations in the primitive method and in the transformation method are compared to illustrate how the new method accelerates the convergence of the solution. To speed up the convergence, we introduce the DIIS (direct inversion of the iterative subspace) method including Simple Mixing and Anderson Mixing as under-relaxation techniques, the effectiveness of which on acceleration is shown by numerical tests. It is worth noting that the primitive method fails to solve the size-modified Poisson-Nernst-Planck equations for real protein systems but the transformation method succeeds in the simulations of the ACh-AChE reaction system and the DNA fragment. To improve the accuracy of the solution, we introduce high order elements and mesh adaptation based on an a posteriori error estimator. Numerical results indicate that our mesh adaptation process leads to quasi-optimal convergence. We implement our algorithms using the parallel adaptive finite element package PHG [53] and high parallel efficiency is obtained.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Yang, Ying, e Benzhuo Lu. "An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations". Advances in Applied Mathematics and Mechanics 5, n.º 1 (fevereiro de 2013): 113–30. http://dx.doi.org/10.4208/aamm.11-m11184.

Texto completo da fonte
Resumo:
AbstractPoisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodiffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. Several numerical examples including biomolecular problems are shown to support our analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hineman, Jay L., e Rolf J. Ryham. "Very weak solutions for Poisson–Nernst–Planck system". Nonlinear Analysis: Theory, Methods & Applications 115 (março de 2015): 12–24. http://dx.doi.org/10.1016/j.na.2014.11.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Eisenberg, Bob, Tzyy-Leng Horng, Tai-Chia Lin e Chun Liu. "Steric PNP (Poisson-Nernst-Planck): Ions in Channels". Biophysical Journal 104, n.º 2 (janeiro de 2013): 509a. http://dx.doi.org/10.1016/j.bpj.2012.11.2809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

González Granada, José Rodrigo, e Victor A. Kovtunenko. "Entropy method for generalized Poisson–Nernst–Planck equations". Analysis and Mathematical Physics 8, n.º 4 (novembro de 2018): 603–19. http://dx.doi.org/10.1007/s13324-018-0257-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Prohl, Andreas, e Markus Schmuck. "Convergent discretizations for the Nernst–Planck–Poisson system". Numerische Mathematik 111, n.º 4 (26 de novembro de 2008): 591–630. http://dx.doi.org/10.1007/s00211-008-0194-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kato, Masayuki. "Numerical analysis of the Nernst-Planck-Poisson system". Journal of Theoretical Biology 177, n.º 3 (dezembro de 1995): 299–304. http://dx.doi.org/10.1006/jtbi.1995.0247.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Meng, Da, Bin Zheng, Guang Lin e Maria L. Sushko. "Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment". Communications in Computational Physics 16, n.º 5 (novembro de 2014): 1298–322. http://dx.doi.org/10.4208/cicp.040913.120514a.

Texto completo da fonte
Resumo:
AbstractWe have developed efficient numerical algorithms for solving 3D steady-state Poisson-Nernst-Planck (PNP) equations with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Then, the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed, which reduces computational complexity from O(N2) to O(NlogN), where N is the number of grid points. Integrals involving the Dirac delta function are evaluated directly by coordinate transformation, which yields more accurate results compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for lithiumion (Li-ion) batteries are shown to be in good agreement with the experimental data and the results from previous studies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Chaudhry, Jehanzeb Hameed, Jeffrey Comer, Aleksei Aksimentiev e Luke N. Olson. "A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore". Communications in Computational Physics 15, n.º 1 (janeiro de 2014): 93–125. http://dx.doi.org/10.4208/cicp.101112.100413a.

Texto completo da fonte
Resumo:
AbstractThe conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton’s method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes.To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Hashemi Amrei, S. M. H., Gregory H. Miller, Kyle J. M. Bishop e William D. Ristenpart. "A perturbation solution to the full Poisson–Nernst–Planck equations yields an asymmetric rectified electric field". Soft Matter 16, n.º 30 (2020): 7052–62. http://dx.doi.org/10.1039/d0sm00417k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ostilla-Mónico, Rodolfo, e Alpha A. Lee. "Controlling turbulent drag across electrolytes using electric fields". Faraday Discussions 199 (2017): 159–73. http://dx.doi.org/10.1039/c6fd00247a.

Texto completo da fonte
Resumo:
Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier–Stokes Poisson–Nernst–Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson–Nernst–Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sun, Ning, e Dilip Gersappe. "Simulation of diffuse-charge capacitance in electric double layer capacitors". Modern Physics Letters B 31, n.º 01 (10 de janeiro de 2017): 1650431. http://dx.doi.org/10.1142/s0217984916504315.

Texto completo da fonte
Resumo:
We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson–Nernst–Planck (MPNP) equations and compared with regular Poisson–Nernst–Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Queralt-Martín, María, Carlos Peiró-González, Marcel Aguilella-Arzo e Antonio Alcaraz. "Effects of extreme pH on ionic transport through protein nanopores: the role of ion diffusion and charge exclusion". Physical Chemistry Chemical Physics 18, n.º 31 (2016): 21668–75. http://dx.doi.org/10.1039/c6cp04180a.

Texto completo da fonte
Resumo:
We combine electrophysiological experiments with the structure-based Poisson–Nernst–Planck 3D calculations to investigate the transport properties of the bacterial porin OmpF under large pH gradients and particularly low salt concentrations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Gwecho, Abidha Monica, Wang Shu, Onyango Thomas Mboya e Sudheer Khan. "Solutions of Poisson-Nernst Planck Equations with Ion Interaction". Applied Mathematics 13, n.º 03 (2022): 263–81. http://dx.doi.org/10.4236/am.2022.133020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Schönke, Johannes. "Unsteady analytical solutions to the Poisson–Nernst–Planck equations". Journal of Physics A: Mathematical and Theoretical 45, n.º 45 (29 de outubro de 2012): 455204. http://dx.doi.org/10.1088/1751-8113/45/45/455204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Filipek, Robert, Piotr Kalita, Lucjan Sapa e Krzysztof Szyszkiewicz. "On local weak solutions to Nernst–Planck–Poisson system". Applicable Analysis 96, n.º 13 (6 de setembro de 2016): 2316–32. http://dx.doi.org/10.1080/00036811.2016.1221941.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Golovnev, A., e S. Trimper. "Steady state solution of the Poisson–Nernst–Planck equations". Physics Letters A 374, n.º 28 (junho de 2010): 2886–89. http://dx.doi.org/10.1016/j.physleta.2010.05.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

SCHMUCK, MARKUS. "ANALYSIS OF THE NAVIER–STOKES–NERNST–PLANCK–POISSON SYSTEM". Mathematical Models and Methods in Applied Sciences 19, n.º 06 (junho de 2009): 993–1014. http://dx.doi.org/10.1142/s0218202509003693.

Texto completo da fonte
Resumo:
We study a fluid-dynamical model based on a coupled Navier–Stokes–Nernst–Planck–Poisson system. Of special interest are the fluid velocity, concentrations of charged particles ranging from colloidal to nano size and the induced quasi-electrostatic potential, which all depend on an externally applied electrical field. For d ≤ 3, we prove existence and in some cases uniqueness of weak solutions. Moreover, we characterize solutions via energy laws, mass conservation, non-negativity and pointwise bounds. Furthermore, the system enjoys an entropy law. Existence of locally strong solutions is verified.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Gavish, Nir. "Poisson–Nernst–Planck equations with high-order steric effects". Physica D: Nonlinear Phenomena 411 (outubro de 2020): 132536. http://dx.doi.org/10.1016/j.physd.2020.132536.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Mathur, Sanjay R., e Jayathi Y. Murthy. "A multigrid method for the Poisson–Nernst–Planck equations". International Journal of Heat and Mass Transfer 52, n.º 17-18 (agosto de 2009): 4031–39. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.03.040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Frank, Florian, Nadja Ray e Peter Knabner. "Numerical investigation of homogenized Stokes–Nernst–Planck–Poisson systems". Computing and Visualization in Science 14, n.º 8 (dezembro de 2011): 385–400. http://dx.doi.org/10.1007/s00791-013-0189-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Lin, Guojian. "A NOTE ON THE CLASSICAL POISSON-NERNST-PLANCK MODELS". Far East Journal of Applied Mathematics 95, n.º 1 (6 de setembro de 2016): 13–26. http://dx.doi.org/10.17654/am095010013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Ray, N., A. Muntean e P. Knabner. "Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system". Journal of Mathematical Analysis and Applications 390, n.º 1 (junho de 2012): 374–93. http://dx.doi.org/10.1016/j.jmaa.2012.01.052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zheng, Qiong, Duan Chen e Guo-Wei Wei. "Second-order Poisson–Nernst–Planck solver for ion transport". Journal of Computational Physics 230, n.º 13 (junho de 2011): 5239–62. http://dx.doi.org/10.1016/j.jcp.2011.03.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Moya, A. A. "Theory of the formation of the electric double layer at the ion exchange membrane–solution interface". Physical Chemistry Chemical Physics 17, n.º 7 (2015): 5207–18. http://dx.doi.org/10.1039/c4cp05702c.

Texto completo da fonte
Resumo:
The study of the formation of the electric double layer at the membrane–solution interface based on the Nernst–Planck and Poisson equations including different diffusion coefficient and dielectric constant values in the solution and membrane phases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Jasielec, Jerzy J. "Electrodiffusion Phenomena in Neuroscience and the Nernst–Planck–Poisson Equations". Electrochem 2, n.º 2 (5 de abril de 2021): 197–215. http://dx.doi.org/10.3390/electrochem2020014.

Texto completo da fonte
Resumo:
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bedin, L., e Mark Thompson. "Existence theory for a Poisson-Nernst-Planck model of electrophoresis". Communications on Pure and Applied Analysis 12, n.º 1 (setembro de 2012): 157–206. http://dx.doi.org/10.3934/cpaa.2013.12.157.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Nanninga, Paul Marlon. "A computational neuron model based on Poisson-Nernst-Planck theory". ANZIAM Journal 49 (21 de setembro de 2008): 46. http://dx.doi.org/10.21914/anziamj.v50i0.1390.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Shi, Xiangyu, e Linzhang Lu. "Nonconforming finite element method for coupled Poisson–Nernst–Planck equations". Numerical Methods for Partial Differential Equations 37, n.º 3 (21 de janeiro de 2021): 2714–29. http://dx.doi.org/10.1002/num.22764.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kinderlehrer, David, Léonard Monsaingeon e Xiang Xu. "A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations". ESAIM: Control, Optimisation and Calculus of Variations 23, n.º 1 (10 de outubro de 2016): 137–64. http://dx.doi.org/10.1051/cocv/2015043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Liu, Jinn-Liang, e Bob Eisenberg. "Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels". Journal of Chemical Physics 141, n.º 22 (14 de dezembro de 2014): 22D532. http://dx.doi.org/10.1063/1.4902973.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lenzi, E. K., L. R. Evangelista, L. Taghizadeh, D. Pasterk, R. S. Zola, T. Sandev, C. Heitzinger e I. Petreska. "Reliability of Poisson–Nernst–Planck Anomalous Models for Impedance Spectroscopy". Journal of Physical Chemistry B 123, n.º 37 (12 de agosto de 2019): 7885–92. http://dx.doi.org/10.1021/acs.jpcb.9b06263.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Liu, Weishi, e Bixiang Wang. "Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels". Journal of Dynamics and Differential Equations 22, n.º 3 (10 de agosto de 2010): 413–37. http://dx.doi.org/10.1007/s10884-010-9186-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Flavell, Allen, Michael Machen, Bob Eisenberg, Julienne Kabre, Chun Liu e Xiaofan Li. "A conservative finite difference scheme for Poisson–Nernst–Planck equations". Journal of Computational Electronics 13, n.º 1 (25 de setembro de 2013): 235–49. http://dx.doi.org/10.1007/s10825-013-0506-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Flavell, Allen, Julienne Kabre e Xiaofan Li. "An energy-preserving discretization for the Poisson–Nernst–Planck equations". Journal of Computational Electronics 16, n.º 2 (6 de março de 2017): 431–41. http://dx.doi.org/10.1007/s10825-017-0969-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Eisenberg, Bob, e Weishi Liu. "Poisson–Nernst–Planck Systems for Ion Channels with Permanent Charges". SIAM Journal on Mathematical Analysis 38, n.º 6 (janeiro de 2007): 1932–66. http://dx.doi.org/10.1137/060657480.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Horng, Tzyy-Leng, Ping-Hsuan Tsai e Tai-Chia Lin. "Modification of Bikerman model with specific ion sizes". Computational and Mathematical Biophysics 5, n.º 1 (20 de dezembro de 2017): 142–49. http://dx.doi.org/10.1515/mlbmb-2017-0010.

Texto completo da fonte
Resumo:
Abstract Classical Poisson-Boltzman and Poisson-Nernst-Planck models can only work when ion concentrations are very dilute, which often mismatches experiments. Researchers have been working on the modification to include finite-size effect of ions, which is non-negelible when ion concentrations are not dilute. One of modified models with steric effect is Bikerman model, which is rather popular nowadays. It is based on the consideration of ion size by putting additional entropy term for solvent in free energy. However, ion size is non-specific in original Bikerman model, which did not consider specific ion sizes. Many researchers have worked on the extension of Bikerman model to have specific ion sizes. A direct extension of original Bikerman model by simply replacing the non-specific ion size to specific ones seems natural and has been acceptable to many researchers in this field.Herewe prove this straight forward extension, in some limiting situations, fails to uphold the basic requirement that ion occupation sites must be identical. This requirement is necessary when computing entropy via particle distribution on occupation sites.We derived a new modified Bikerman model for using specific ion sizes by fixing this problem, and obtained its modified Poisson-Boltzmann and Poisson-Nernst-Planck equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mádai, Eszter, Bartłomiej Matejczyk, András Dallos, Mónika Valiskó e Dezső Boda. "Controlling ion transport through nanopores: modeling transistor behavior". Physical Chemistry Chemical Physics 20, n.º 37 (2018): 24156–67. http://dx.doi.org/10.1039/c8cp03918f.

Texto completo da fonte
Resumo:
We present a modeling study of a nanopore-based transistor computed by a mean-field continuum theory (Poisson–Nernst–Planck, PNP) and a hybrid method including particle simulation (Local Equilibrium Monte Carlo, LEMC) that is able to take ionic correlations into account including the finite size of ions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

null, null. "Some Random Batch Particle Methods for the Poisson-Nernst-Planck and Poisson-Boltzmann Equations". Communications in Computational Physics 32, n.º 1 (junho de 2022): 41–82. http://dx.doi.org/10.4208/cicp.oa-2021-0159.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Corry, Ben, Serdar Kuyucak e Shin-Ho Chung. "Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels". Biophysical Journal 84, n.º 6 (junho de 2003): 3594–606. http://dx.doi.org/10.1016/s0006-3495(03)75091-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Filipek, Robert, Krzysztof Szyszkiewicz, Bogusław Bożek, Marek Danielewski e A. Lewenstam. "Diffusion Transport in Electrochemical Systems: A New Approach to Determining of the Membrane Potential at Steady State". Defect and Diffusion Forum 283-286 (março de 2009): 487–93. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.487.

Texto completo da fonte
Resumo:
Ionic concentrations and electric field space profiles in one dimensional membrane are described using Nernst-Planck-Poisson (NPP) equations. The usual assumptions for the steady state NPP problem requires knowledge of the boundary values of the concentrations and electrical potential difference. In analytical chemistry the potential difference may not be known and its theoretical prediction from the model is desirable. The effective methods of the solution to the NPP equations are presented. The Poisson equation is solved without widely used simplifications such as the constant field or the electroneutrality assumptions. The first method uses a steady state formulation of NPP problem. The original system of ODEs is turned into the system of non-linear algebraic equations with unknowns fluxes of the components and electrical potential difference. The second method uses the time-dependent form of the Nernst-Planck-Poisson equations. Steady-state solution has been obtained by starting from an initial profiles, and letting the numerical system evolve until a stationary solution is reached. The methods have been tested for different electrochemical systems: liquid junction and ion selective electrodes (ISEs). The results for the liquid junction case have been also verified with the approximate solutions leading to a good agreement. Comparison with the experimental results for ISEs has been carried out.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Zhao, Jihong, Chao Deng e Shangbin Cui. "Global Existence and Asymptotic Behavior of Self-Similar Solutions for the Navier-Stokes-Nernst-Planck-Poisson System in". International Journal of Differential Equations 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/329014.

Texto completo da fonte
Resumo:
We study the Navier-Stokes-Nernst-Planck-Poisson system modeling the flow of electrohydrodynamics. For small initial data, the global existence, uniqueness, and asymptotic stability as time goes to infinity of self-similar solutions to the Cauchy problem of this system posed in the whole three dimensional space are proved in the function spaces of pseudomeasure type.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Bożek, Bogusław, H. Leszczyński, Katarzyna Tkacz-Śmiech e Marek Danielewski. "Electrochemistry of Symmetrical Ion Channel: Three-Dimensional Nernst-Planck-Poisson Model". Defect and Diffusion Forum 363 (maio de 2015): 68–78. http://dx.doi.org/10.4028/www.scientific.net/ddf.363.68.

Texto completo da fonte
Resumo:
The paper provides a physical description of ionic transport through the rigid symmetrical channel. A three-dimensional mathematical model, in which the ionic transport is treated as the electrodiffusion of ions, is presented. The model bases on the solution of the 3D Nernst-Planck-Poisson system for cylindrical geometry. The total flux includes drift (convection) and diffusion terms. It allows simulating the transport characteristics at the steady-state and time evolution of the system. The numerical solutions of the coupled differential diffusion equation system are obtained by finite element method. Examples are presented in which the flow characteristics at the stationary state and during time evolution are compared. It is shown that the stationary state is achieved after about 2×10 -8 s since the process beginning. Various initial conditions (channel charging and dimensions) are considered as the key parameters controlling the selectivity of the channel. The model allows determining the flow characteristic, calculating the local concentration and potential across the channel. The model can be extended to simulate transport in polymer membranes and nanopores which might be useful in designing biosensors and nanodevices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Liu, Hailiang, Zhongming Wang, Peimeng Yin e Hui Yu. "Positivity-preserving third order DG schemes for Poisson–Nernst–Planck equations". Journal of Computational Physics 452 (março de 2022): 110777. http://dx.doi.org/10.1016/j.jcp.2021.110777.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Ma, Manman, Zhenli Xu e Liwei Zhang. "Modified Poisson--Nernst--Planck Model with Coulomb and Hard-sphere Correlations". SIAM Journal on Applied Mathematics 81, n.º 4 (janeiro de 2021): 1645–67. http://dx.doi.org/10.1137/19m1310098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Delavari, Najmeh, Klas Tybrandt, Magnus Berggren, Benoît Piro, Vincent Noël, Giorgio Mattana e Igor Zozoulenko. "Nernst–Planck–Poisson analysis of electrolyte-gated organic field-effect transistors". Journal of Physics D: Applied Physics 54, n.º 41 (29 de julho de 2021): 415101. http://dx.doi.org/10.1088/1361-6463/ac14f3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Burger, M., B. Schlake e M.-T. Wolfram. "Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries". Nonlinearity 25, n.º 4 (6 de março de 2012): 961–90. http://dx.doi.org/10.1088/0951-7715/25/4/961.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Gao, Huadong, e Dongdong He. "Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations". Journal of Scientific Computing 72, n.º 3 (28 de fevereiro de 2017): 1269–89. http://dx.doi.org/10.1007/s10915-017-0400-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Shobukhov, Andrey V., e Dmitry S. Maximov. "Exact steady state solutions in symmetrical Nernst–Planck–Poisson electrodiffusive models". Journal of Mathematical Chemistry 52, n.º 5 (2 de fevereiro de 2014): 1338–49. http://dx.doi.org/10.1007/s10910-014-0313-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia