Literatura científica selecionada sobre o tema "Equation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Equation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Equation"
Karakostas, George L. "Asymptotic behavior of a certain functional equation via limiting equations". Czechoslovak Mathematical Journal 36, n.º 2 (1986): 259–67. http://dx.doi.org/10.21136/cmj.1986.102089.
Texto completo da fonteParkala, Naresh, e Upender Reddy Gujjula. "Mohand Transform for Solution of Integral Equations and Abel's Equation". International Journal of Science and Research (IJSR) 13, n.º 5 (5 de maio de 2024): 1188–91. http://dx.doi.org/10.21275/sr24512145111.
Texto completo da fonteDomoshnitsky, Alexander, e Roman Koplatadze. "On Asymptotic Behavior of Solutions of Generalized Emden-Fowler Differential Equations with Delay Argument". Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/168425.
Texto completo da fonteBecker, Leigh, Theodore Burton e Ioannis Purnaras. "Complementary equations: a fractional differential equation and a Volterra integral equation". Electronic Journal of Qualitative Theory of Differential Equations, n.º 12 (2015): 1–24. http://dx.doi.org/10.14232/ejqtde.2015.1.12.
Texto completo da fonteN O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform". International Journal of Science and Research (IJSR) 12, n.º 6 (5 de junho de 2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.
Texto completo da fonteZhao, Wenling, Hongkui Li, Xueting Liu e Fuyi Xu. "Necessary and Sufficient Conditions for the Existence of a Hermitian Positive Definite Solution of a Type of Nonlinear Matrix Equations". Mathematical Problems in Engineering 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/672695.
Texto completo da fonteYan, Zhenya. "Complex PT -symmetric nonlinear Schrödinger equation and Burgers equation". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, n.º 1989 (28 de abril de 2013): 20120059. http://dx.doi.org/10.1098/rsta.2012.0059.
Texto completo da fonteProkhorova, M. F. "Factorization of the reaction-diffusion equation, the wave equation, and other equations". Proceedings of the Steklov Institute of Mathematics 287, S1 (27 de novembro de 2014): 156–66. http://dx.doi.org/10.1134/s0081543814090156.
Texto completo da fonteShi, Yong-Guo, e Xiao-Bing Gong. "Linear functional equations involving Babbage’s equation". Elemente der Mathematik 69, n.º 4 (2014): 195–204. http://dx.doi.org/10.4171/em/263.
Texto completo da fonteMickens, Ronald E. "Difference equation models of differential equations". Mathematical and Computer Modelling 11 (1988): 528–30. http://dx.doi.org/10.1016/0895-7177(88)90549-3.
Texto completo da fonteTeses / dissertações sobre o assunto "Equation"
Thompson, Jeremy R. (Jeremy Ray). "Physical Motivation and Methods of Solution of Classical Partial Differential Equations". Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Texto completo da fonteHoward, Tamani M. "Hyperbolic Monge-Ampère Equation". Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Texto completo da fonteVong, Seak Weng. "Two problems on the Navier-Stokes equations and the Boltzmann equation /". access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b19885805a.pdf.
Texto completo da fonte"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 72-77)
Guan, Meijiao. "Global questions for evolution equations Landau-Lifshitz flow and Dirac equation". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/22491.
Texto completo da fonteJumarhon, Bartur. "The one dimensional heat equation and its associated Volterra integral equations". Thesis, University of Strathclyde, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342381.
Texto completo da fonteBanerjee, Paromita. "Numerical Methods for Stochastic Differential Equations and Postintervention in Structural Equation Models". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1597879378514956.
Texto completo da fonteWang, Jun. "Integral Equation Methods for the Heat Equation in Moving Geometry". Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10618746.
Texto completo da fonteMany problems in physics and engineering require the solution of the heat equation in moving geometry. Integral representations are particularly appropriate in this setting since they satisfy the governing equation automatically and, in the homogeneous case, require the discretization of the space-time boundary alone. Unlike methods based on direct discretization of the partial differential equation, they are unconditonally stable. Moreover, while a naive implementation of this approach is impractical, several efforts have been made over the past few years to reduce the overall computational cost. Of particular note are Fourier-based methods which achieve optimal complexity so long as the time step Δt is of the same order as Δx, the mesh size in the spatial variables. As the time step goes to zero, however, the cost of the Fourier-based fast algorithms grows without bound. A second difficulty with existing schemes has been the lack of efficient, high-order local-in-time quadratures for layer heat potentials.
In this dissertation, we present a new method for evaluating heat potentials that makes use of a spatially adaptive mesh instead of a Fourier series, a new version of the fast Gauss transform, and a new hybrid asymptotic/numerical method for local-in-time quadrature. The method is robust and efficient for any Δt, with essentially optimal computational complexity. We demonstrate its performance with numerical examples and discuss its implications for subsequent work in diffusion, heat flow, solidification and fluid dynamics.
Grundström, John. "The Sustainability Equation". Thesis, Umeå universitet, Arkitekthögskolan vid Umeå universitet, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133151.
Texto completo da fonteGylys-Colwell, Frederick Douglas. "An inverse problem for the anisotropic time independent wave equation /". Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5726.
Texto completo da fonteShedlock, Andrew James. "A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Texto completo da fonteMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Livros sobre o assunto "Equation"
Selvadurai, A. P. S. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Encontre o texto completo da fonteTam, Kenneth. The earther equation: The fourth equations novel. Waterloo, ON: Iceberg Pub., 2005.
Encontre o texto completo da fonteTam, Kenneth. The vengeance equation: The sixth equations novel. Waterloo, Ont: Iceberg, 2007.
Encontre o texto completo da fonteTam, Kenneth. The alien equation: The second equations novel. Waterloo, ON: Iceberg Pub., 2004.
Encontre o texto completo da fonteTam, Kenneth. The human equation: The first equations novel. Waterloo, ON: Iceberg Pub., 2003.
Encontre o texto completo da fonteTam, Kenneth. The genesis equation: The fifth equations novel. Waterloo, ON: Iceberg, 2006.
Encontre o texto completo da fonteBejenaru, Ioan. Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. Providence, Rhode Island: American Mathematical Society, 2013.
Encontre o texto completo da fonteDante's equation. London: Orbit, 2003.
Encontre o texto completo da fonteBarbeau, Edward J. Pell’s Equation. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/b97610.
Texto completo da fonteDante's equation. London: Orbit, 2004.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Equation"
Horgmo Jæger, Karoline, e Aslak Tveito. "The Cable Equation". In Differential Equations for Studies in Computational Electrophysiology, 79–91. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_9.
Texto completo da fonteHorgmo Jæger, Karoline, e Aslak Tveito. "A Simple Cable Equation". In Differential Equations for Studies in Computational Electrophysiology, 47–52. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_6.
Texto completo da fonteKurasov, Pavel. "The Characteristic Equation". In Operator Theory: Advances and Applications, 97–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67872-5_5.
Texto completo da fonteKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation". In Encyclopedia of Systems Biology, 1621–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Texto completo da fonteSleeman, Brian D. "Partial Differential Equations, Poisson Equation". In Encyclopedia of Systems Biology, 1635–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_274.
Texto completo da fonteClayton, Richard H. "Partial Differential Equations, Wave Equation". In Encyclopedia of Systems Biology, 1638–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_275.
Texto completo da fonteBrenig, Wilhelm. "Rate Equations (Master Equation, Stosszahlansatz)". In Statistical Theory of Heat, 158–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74685-7_32.
Texto completo da fonteRapp, Christoph. "Basic equations". In Hydraulics in Civil Engineering, 51–69. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54860-4_5.
Texto completo da fonteParker, David F. "Laplace’s Equation and Poisson’s Equation". In Springer Undergraduate Mathematics Series, 55–76. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0019-5_4.
Texto completo da fonteGoodair, Daniel, e Dan Crisan. "On the 3D Navier-Stokes Equations with Stochastic Lie Transport". In Mathematics of Planet Earth, 53–110. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Equation"
Cohen, Leon. "Phase-space equation for wave equations". In ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800400.
Texto completo da fonteRoy, Subhro, Shyam Upadhyay e Dan Roth. "Equation Parsing : Mapping Sentences to Grounded Equations". In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/d16-1117.
Texto completo da fonteMikhailov, M. S., e A. A. Komarov. "Combining Parabolic Equation Method with Surface Integral Equations". In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017786.
Texto completo da fonteTAKEYAMA, YOSHIHIRO. "DIFFERENTIAL EQUATIONS COMPATIBLE WITH BOUNDARY RATIONAL qKZ EQUATION". In Proceedings of the Infinite Analysis 09. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814324373_0021.
Texto completo da fonteIsserstedt, Philipp, Christian Fischer e Thorsten Steinert. "QCD’s equation of state from Dyson-Schwinger equations". In FAIR next generation scientists - 7th Edition Workshop. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.419.0024.
Texto completo da fonteSharifi, J., e H. Momeni. "Optimal control equation for quantum stochastic differential equations". In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717172.
Texto completo da fonteFreire, Igor Leite, e Priscila Leal da Silva. "An equation unifying both Camassa-Holm and Novikov equations". In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0304.
Texto completo da fontePang, Subeen, e George Barbastathis. "Robust Transport-of-Intensity Equation with Neural Differential Equations". In Computational Optical Sensing and Imaging. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cosi.2023.cth4d.4.
Texto completo da fonteBui, T. T., e V. Popov. "Radial basis integral equation method for Navier-Stokes equations". In BEM/MRM 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/be090131.
Texto completo da fonteVălcan, Teodor-Dumitru. "From Diofantian Equations To Matricial Equations (Ii) -Generalizations Of The Pythagorean Equation-". In 9th International Conference Education, Reflection, Development. European Publisher, 2022. http://dx.doi.org/10.15405/epes.22032.63.
Texto completo da fonteRelatórios de organizações sobre o assunto "Equation"
Lettau, Martin, e Sydney Ludvigson. Euler Equation Errors. Cambridge, MA: National Bureau of Economic Research, setembro de 2005. http://dx.doi.org/10.3386/w11606.
Texto completo da fonteBoyd, Zachary M., Scott D. Ramsey e Roy S. Baty. Symmetries of the Euler compressible flow equations for general equation of state. Office of Scientific and Technical Information (OSTI), outubro de 2015. http://dx.doi.org/10.2172/1223765.
Texto completo da fonteMickens, Ronald E. Mathematical and Numerical Studies of Nonstandard Difference Equation Models of Differential Equations. Office of Scientific and Technical Information (OSTI), dezembro de 2008. http://dx.doi.org/10.2172/965764.
Texto completo da fonteGrinfeld, M. A. Operational Equations of State. 1. A Novel Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2011. http://dx.doi.org/10.21236/ada553223.
Texto completo da fonteMenikoff, Ralph. JWL Equation of State. Office of Scientific and Technical Information (OSTI), dezembro de 2015. http://dx.doi.org/10.2172/1229709.
Texto completo da fonteGrove, John W. xRage Equation of State. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1304734.
Texto completo da fonteSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1989. http://dx.doi.org/10.21236/ada218588.
Texto completo da fonteFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1987. http://dx.doi.org/10.21236/ada190319.
Texto completo da fonteUhlman, J. S., e Jr. An Integral Equation Formulation of the Equations of Motion of an Incompressible Fluid. Fort Belvoir, VA: Defense Technical Information Center, julho de 1992. http://dx.doi.org/10.21236/ada416252.
Texto completo da fonteGrinfeld, Michael. The Operational Equations of State, 4: The Dulong-Petit Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, julho de 2012. http://dx.doi.org/10.21236/ada568915.
Texto completo da fonte