Literatura científica selecionada sobre o tema "Epigenome editors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Epigenome editors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Epigenome editors"
Syding, Linn Amanda, Petr Nickl, Petr Kasparek e Radislav Sedlacek. "CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review". Cells 9, n.º 4 (16 de abril de 2020): 993. http://dx.doi.org/10.3390/cells9040993.
Texto completo da fonteNakamura, Muneaki, Alexis E. Ivec, Yuchen Gao e Lei S. Qi. "Durable CRISPR-Based Epigenetic Silencing". BioDesign Research 2021 (1 de julho de 2021): 1–8. http://dx.doi.org/10.34133/2021/9815820.
Texto completo da fonteFang, Yongxing, Wladislaw Stroukov, Toni Cathomen e Claudio Mussolino. "Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors". International Journal of Molecular Sciences 21, n.º 3 (25 de janeiro de 2020): 795. http://dx.doi.org/10.3390/ijms21030795.
Texto completo da fonteRoman Azcona, Maria Silvia, Yongxing Fang, Antonio Carusillo, Toni Cathomen e Claudio Mussolino. "A versatile reporter system for multiplexed screening of effective epigenome editors". Nature Protocols 15, n.º 10 (4 de setembro de 2020): 3410–40. http://dx.doi.org/10.1038/s41596-020-0380-y.
Texto completo da fonteWillyard, Cassandra. "The epigenome editors: How tools such as CRISPR offer new details about epigenetics". Nature Medicine 23, n.º 8 (agosto de 2017): 900–903. http://dx.doi.org/10.1038/nm0817-900.
Texto completo da fonteO’Geen, Henriette, Marketa Tomkova, Jacquelyn A. Combs, Emma K. Tilley e David J. Segal. "Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing". Nucleic Acids Research 50, n.º 6 (2 de março de 2022): 3239–53. http://dx.doi.org/10.1093/nar/gkac123.
Texto completo da fontePsatha, Nikoletta, Kiriaki Paschoudi, Anastasia Papadopoulou e Evangelia Yannaki. "In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations". Genes 13, n.º 12 (27 de novembro de 2022): 2222. http://dx.doi.org/10.3390/genes13122222.
Texto completo da fonteDehshahri, Ali, Alessio Biagioni, Hadi Bayat, E. Hui Clarissa Lee, Mohammad Hashemabadi, Hojjat Samareh Fekri, Ali Zarrabi, Reza Mohammadinejad e Alan Prem Kumar. "Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives". International Journal of Molecular Sciences 22, n.º 21 (20 de outubro de 2021): 11321. http://dx.doi.org/10.3390/ijms222111321.
Texto completo da fonteSzyf, Moshe. "The Epigenome: Molecular Hide and Seek. Stephan Beck and Alexander Olek, editors. Weinheim, Germany: Wiley-VCH GmbH Co. KGaA, 2003, 188 pp., $35.00, softcover. ISBN 3-527-30494-0." Clinical Chemistry 49, n.º 9 (1 de setembro de 2003): 1566–67. http://dx.doi.org/10.1373/49.9.1566.
Texto completo da fonteBrane, Andrew, Madeline Sutko e Trygve O. Tollefsbol. "p21 Promoter Methylation Is Vital for the Anticancer Activity of Withaferin A". International Journal of Molecular Sciences 26, n.º 3 (30 de janeiro de 2025): 1210. https://doi.org/10.3390/ijms26031210.
Texto completo da fonteTeses / dissertações sobre o assunto "Epigenome editors"
Fontana, Letizia. "Genome and epigenome editing approaches to treat β-hemoglobinopathies". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5230.
Texto completo da fonteB-thalassemia and sickle cell disease (SCD) result from mutations that affect the synthesis or structure of adult hemoglobin. Historically, allogeneic hematopoietic stem cell (HSC) transplantation from a compatible donor was the only curative treatment. Transplantation of autologous, genetically modified HSCs offers a promising therapeutic alternative for patients lacking a suitable donor. The clinical severity in b-hemoglobinopathies is mitigated by co-inheritance of hereditary persistence of fetal hemoglobin (HPFH), a benign condition characterized by mutations occurring in the genes encoding the fetal y-globin chains, which lead to increased fetal hemoglobin (HbF, a2y2) expression, which can rescue the b-thalassemic and SCD phenotypes. HbF reactivation can be achieved by down-regulating BCL11A, encoding a key repressor of HbF. A CRISPR/Cas9 strategy targeting the GATA1 binding site (BS) within the +58-kb erythroid-specific enhancer of BCL11A has recently been approved as the first gene-editing therapy for b-thalassemia and SCD. Indeed, the targeting of the BCL11A erythroid-specific enhancer led to an efficient reduction of BCL11A in the erythroid cells, without impacting the differentiation of HSPCs in the other cell lineages. However, site-specific nucleases induce double strand breaks (DSBs), posing significant risks, such apoptosis and generation of large genomic rearrangements. In addition, to obtain an adequate number of corrected cells to transplant, several collections of HSCs are necessary to compensate for the cell loss due to DSB-induced apoptosis. Finally, the clinical study showed variability in the extent of HbF reactivation, still high HbS levels and modest correction of ineffective erythropoiesis. Novel CRISPR/Cas9 derived tools are currently available and can be used to develop therapeutic strategies associated with a low risk of DSB generation and increased HbF expression. In this project, we intend to develop universal, safe and efficacious therapeutic strategies for b-hemoglobinopathies aimed at modifying HSCs using base editors (BEs) and epigenome editors to reactivate HbF expression in their erythroid progeny. BEs are a CRISPR-Cas9-based genome editing technology that allows the introduction of point mutations with little DSB generation. In this work we used this technology to inactivate the GATA1 or the ATF4 transcriptional activator BS in the +58-kb and +55-kb BCL11A erythroid-specific enhancers through the insertion of point mutations. In particular, to reach levels of HbF sufficient to rescue the sickling phenotype, we performed simultaneous targeting of the two BS, achieving similar HbF levels compared to CRISPR/Cas9 nuclease-based approach. Additionally, we showed that BEs generated fewer DSBs and genomic rearrangements compared to the CRISPR/Cas9 nuclease approach. In parallel, we developed a novel epigenome-editing strategy aimed at modulating gene expression without altering the DNA sequence (e.g. without generating DSBs). We designed two approaches to upregulate HbF expression: a first strategy targeting and activating the y-globin promoters and a second approach downregulating BCL11A by targeting its erythroid-specific enhancers. We first identified the epigenetic marks in these trans- and cis-regulatory regions that are associated with active or inactive transcription in adult versus fetal erythroid cells. Then we used epigenome editors to deposit active histone modifications at the y-globin promoters and remove inactive marks such as DNA methylation. In parallel, we decorated the BCL11A enhancers with inactive epigenetic marks. Preliminary results demonstrated y-globin reactivation using both strategies, though the effects diminished over time, indicating the need for further optimization. In conclusion, we proposed two different editing approaches that allow to reduce DSB-associate issues as strategies to treat b-hemoglobinopathies
Capítulos de livros sobre o assunto "Epigenome editors"
Sen, Dilara, e Albert J. Keung. "Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities". In Methods in Molecular Biology, 65–87. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_3.
Texto completo da fonteYagci, Z. Begum, Gautami R. Kelkar, Tyler J. Johnson, Dilara Sen e Albert J. Keung. "Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities". In Methods in Molecular Biology, 23–55. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_2.
Texto completo da fonteNoviello, Gemma, e Rutger A. F. Gjaltema. "Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors". In Methods in Molecular Biology, 57–77. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_3.
Texto completo da fonteKroll, Carolin, e Philipp Rathert. "Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration". In Methods in Molecular Biology, 215–25. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_11.
Texto completo da fonte