Artigos de revistas sobre o tema "Epigenetic enzymes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Epigenetic enzymes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Xiaolin, Zhen Dong e Hongjuan Cui. "Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer". Biomolecules 11, n.º 10 (25 de setembro de 2021): 1406. http://dx.doi.org/10.3390/biom11101406.
Texto completo da fonteKringel, Dario, Sebastian Malkusch e Jörn Lötsch. "Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis". International Journal of Molecular Sciences 22, n.º 14 (6 de julho de 2021): 7250. http://dx.doi.org/10.3390/ijms22147250.
Texto completo da fonteRamarao-Milne, Priya, Olga Kondrashova, Sinead Barry, John D. Hooper, Jason S. Lee e Nicola Waddell. "Histone Modifying Enzymes in Gynaecological Cancers". Cancers 13, n.º 4 (16 de fevereiro de 2021): 816. http://dx.doi.org/10.3390/cancers13040816.
Texto completo da fonteRuoß, Marc, Georg Damm, Massoud Vosough, Lisa Ehret, Carl Grom-Baumgarten, Martin Petkov, Silvio Naddalin et al. "Epigenetic Modifications of the Liver Tumor Cell Line HepG2 Increase Their Drug Metabolic Capacity". International Journal of Molecular Sciences 20, n.º 2 (16 de janeiro de 2019): 347. http://dx.doi.org/10.3390/ijms20020347.
Texto completo da fonteMaleszewska, Marta, Bartosz Wojtas, Bartlomiej Gielniewski, Shamba Mondal, Jakub Mieczkowski, Michal Dabrowski, Janusz Siedlecki et al. "ECOA-6. Genomic and transcriptomic analyses reveal diverse mechanisms responsible for deregulation of epigenetic enzyme/modifier expression in glioblastoma". Neuro-Oncology Advances 3, Supplement_2 (1 de julho de 2021): ii2. http://dx.doi.org/10.1093/noajnl/vdab070.006.
Texto completo da fonteAmsalem, Zohar, Tasleem Arif, Anna Shteinfer-Kuzmine, Vered Chalifa-Caspi e Varda Shoshan-Barmatz. "The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link". Cancers 12, n.º 4 (22 de abril de 2020): 1031. http://dx.doi.org/10.3390/cancers12041031.
Texto completo da fonteJelinek, Mary Anne. "Biochemical Assays for Epigenetic Enzymes". Genetic Engineering & Biotechnology News 36, n.º 15 (setembro de 2016): 16–17. http://dx.doi.org/10.1089/gen.36.15.08.
Texto completo da fonteJasim, Dr Hiba Sabah. "The Role of Epigenetic Drugs in Cancer Therapy". South Asian Research Journal of Medical Sciences 4, n.º 4 (25 de agosto de 2022): 54–62. http://dx.doi.org/10.36346/sarjms.2022.v04i04.001.
Texto completo da fonteAlghamdi, Bandar Ali, Intisar Mahmoud Aljohani, Bandar Ghazi Alotaibi, Muhammad Ahmed, Kholod Abduallah Almazmomi, Salman Aloufi e Jowhra Alshamrani. "Studying Epigenetics of Cardiovascular Diseases on Chip Guide". Cardiogenetics 12, n.º 3 (7 de julho de 2022): 218–34. http://dx.doi.org/10.3390/cardiogenetics12030021.
Texto completo da fonteBunsick, David A., Jenna Matsukubo e Myron R. Szewczuk. "Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform". Cancers 15, n.º 4 (6 de fevereiro de 2023): 1030. http://dx.doi.org/10.3390/cancers15041030.
Texto completo da fonteMeiliana, Anna, Nurrani Mustika Dewi e Andi Wijaya. "Nutritional Influences on Epigenetics, Aging and Disease". Indonesian Biomedical Journal 11, n.º 1 (30 de abril de 2019): 16–29. http://dx.doi.org/10.18585/inabj.v11i1.780.
Texto completo da fonteYesayan, Alexander, Massimiliano Chetta, Bella Babayan, Tigran A. Yesayan Yesayan, Syuzanna Esoyan e Garegin Sevoyan. "The epigenetic impact of daily diet food choices on human health and chronic diseases". Functional Foods in Health and Disease 14, n.º 10 (25 de outubro de 2024): 739–50. http://dx.doi.org/10.31989/ffhd.v14i10.1464.
Texto completo da fonteSen, Rwik, e Christopher Barnes. "Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes?" Journal of Developmental Biology 9, n.º 2 (12 de maio de 2021): 20. http://dx.doi.org/10.3390/jdb9020020.
Texto completo da fonteQureshi, Muhammad Zahid, Uteuliyev Yerzhan Sabitaliyevich, Marat Rabandiyarov e Arystanbekov Talant Arystanbekuly. "Role of DNA Methyltransferases (DNMTs) in metastasis". Cellular and Molecular Biology 68, n.º 1 (22 de maio de 2022): 226–36. http://dx.doi.org/10.14715/cmb/2022.68.1.27.
Texto completo da fonteBontempo, Paola, Lucia Capasso, Luigi De Masi, Angela Nebbioso e Daniela Rigano. "Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions". Nutrients 16, n.º 15 (24 de julho de 2024): 2399. http://dx.doi.org/10.3390/nu16152399.
Texto completo da fonteZucconi, Beth E., e Philip A. Cole. "Allosteric regulation of epigenetic modifying enzymes". Current Opinion in Chemical Biology 39 (agosto de 2017): 109–15. http://dx.doi.org/10.1016/j.cbpa.2017.05.015.
Texto completo da fonteCopeland, Robert A., Edward J. Olhava e Margaret Porter Scott. "Targeting epigenetic enzymes for drug discovery". Current Opinion in Chemical Biology 14, n.º 4 (agosto de 2010): 505–10. http://dx.doi.org/10.1016/j.cbpa.2010.06.174.
Texto completo da fonteSapozhnikov, Daniel M., e Moshe Szyf. "Increasing Specificity of Targeted DNA Methylation Editing by Non-Enzymatic CRISPR/dCas9-Based Steric Hindrance". Biomedicines 11, n.º 5 (22 de abril de 2023): 1238. http://dx.doi.org/10.3390/biomedicines11051238.
Texto completo da fonteLi, Yinglu, Zhiming Li e Wei-Guo Zhu. "Molecular Mechanisms of Epigenetic Regulators as Activatable Targets in Cancer Theranostics". Current Medicinal Chemistry 26, n.º 8 (16 de maio de 2019): 1328–50. http://dx.doi.org/10.2174/0929867324666170921101947.
Texto completo da fonteLachat, Camille, Diane Bruyère, Amandine Etcheverry, Marc Aubry, Jean Mosser, Walid Warda, Michaël Herfs et al. "EZH2 and KDM6B Expressions Are Associated with Specific Epigenetic Signatures during EMT in Non Small Cell Lung Carcinomas". Cancers 12, n.º 12 (5 de dezembro de 2020): 3649. http://dx.doi.org/10.3390/cancers12123649.
Texto completo da fonteNeff, Tobias, e Scott A. Armstrong. "Recent progress toward epigenetic therapies: the example of mixed lineage leukemia". Blood 121, n.º 24 (13 de junho de 2013): 4847–53. http://dx.doi.org/10.1182/blood-2013-02-474833.
Texto completo da fonteBalch, Curt, Fang Fang, Daniela E. Matei, Tim H. M. Huang e Kenneth P. Nephew. "Minireview: Epigenetic Changes in Ovarian Cancer". Journal of Clinical Endocrinology & Metabolism 94, n.º 8 (1 de agosto de 2009): 3098. http://dx.doi.org/10.1210/jcem.94.8.9998.
Texto completo da fonteBalch, Curt, Fang Fang, Daniela E. Matei, Tim H. M. Huang e Kenneth P. Nephew. "Minireview: Epigenetic Changes in Ovarian Cancer". Journal of Clinical Endocrinology & Metabolism 94, n.º 9 (1 de setembro de 2009): 3617. http://dx.doi.org/10.1210/jcem.94.9.9997.
Texto completo da fonteBalch, Curt, Fang Fang, Daniela E. Matei, Tim H. M. Huang e Kenneth P. Nephew. "Minireview: Epigenetic Changes in Ovarian Cancer". Endocrinology 150, n.º 9 (2 de julho de 2009): 4003–11. http://dx.doi.org/10.1210/en.2009-0404.
Texto completo da fonteCoker, Sharna J., Carlos C. Smith-Díaz, Rebecca M. Dyson, Margreet C. M. Vissers e Mary J. Berry. "The Epigenetic Role of Vitamin C in Neurodevelopment". International Journal of Molecular Sciences 23, n.º 3 (21 de janeiro de 2022): 1208. http://dx.doi.org/10.3390/ijms23031208.
Texto completo da fonteClark, Daniel F., Rachael Schmelz, Nicole Rogers, Nuri E. Smith e Kimberly R. Shorter. "Acute high folic acid treatment in SH-SY5Y cells with and without MTHFR function leads to gene expression changes in epigenetic modifying enzymes, changes in epigenetic marks, and changes in dendritic spine densities". PLOS ONE 16, n.º 1 (7 de janeiro de 2021): e0245005. http://dx.doi.org/10.1371/journal.pone.0245005.
Texto completo da fonteSkalnik, David G. "The epigenetic regulator Cfp1". BioMolecular Concepts 1, n.º 5-6 (1 de dezembro de 2010): 325–34. http://dx.doi.org/10.1515/bmc.2010.031.
Texto completo da fonteLiu, Yu’e, Chao Chen, Xinye Wang, Yihong Sun, Jin Zhang, Juxiang Chen e Yufeng Shi. "An Epigenetic Role of Mitochondria in Cancer". Cells 11, n.º 16 (13 de agosto de 2022): 2518. http://dx.doi.org/10.3390/cells11162518.
Texto completo da fonteSymeonidis, Argiris, Theodora Chatzilygeroudi, Vasiliki Chondrou e Argyro Sgourou. "Contingent Synergistic Interactions between Non-Coding RNAs and DNA-Modifying Enzymes in Myelodysplastic Syndromes". International Journal of Molecular Sciences 23, n.º 24 (16 de dezembro de 2022): 16069. http://dx.doi.org/10.3390/ijms232416069.
Texto completo da fonteConsalvi, Silvia, Martina Sandoná e Valentina Saccone. "Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies". Stem Cells International 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/6093601.
Texto completo da fonteCrispo, Fabiana, Michele Pietrafesa, Valentina Condelli, Francesca Maddalena, Giuseppina Bruno, Annamaria Piscazzi, Alessandro Sgambato, Franca Esposito e Matteo Landriscina. "IDH1 Targeting as a New Potential Option for Intrahepatic Cholangiocarcinoma Treatment—Current State and Future Perspectives". Molecules 25, n.º 16 (18 de agosto de 2020): 3754. http://dx.doi.org/10.3390/molecules25163754.
Texto completo da fonteBlanquart, Christophe, Camille Linot, Pierre-François Cartron, Daniela Tomaselli, Antonello Mai e Philippe Bertrand. "Epigenetic Metalloenzymes". Current Medicinal Chemistry 26, n.º 15 (25 de julho de 2019): 2748–85. http://dx.doi.org/10.2174/0929867325666180706105903.
Texto completo da fonteKolarz, Bogdan, e Maria Majdan. "Epigenetic determinants in rheumatoid arthritis: the influence of DNA methylation and histone modifications". Postępy Higieny i Medycyny Doświadczalnej 71 (22 de dezembro de 2017): 0. http://dx.doi.org/10.5604/01.3001.0010.7478.
Texto completo da fonteHuang, Yi, Laurence J. Marton, Patrick M. Woster e Robert A. Casero. "Polyamine analogues targeting epigenetic gene regulation". Essays in Biochemistry 46 (30 de outubro de 2009): 95–110. http://dx.doi.org/10.1042/bse0460007.
Texto completo da fonteWjst, Matthias, Irene Heimbeck, David Kutschke e Katrin Pukelsheim. "Epigenetic regulation of vitamin D converting enzymes". Journal of Steroid Biochemistry and Molecular Biology 121, n.º 1-2 (julho de 2010): 80–83. http://dx.doi.org/10.1016/j.jsbmb.2010.03.056.
Texto completo da fonteLu, Duo. "Epigenetic modification enzymes: catalytic mechanisms and inhibitors". Acta Pharmaceutica Sinica B 3, n.º 3 (maio de 2013): 141–49. http://dx.doi.org/10.1016/j.apsb.2013.04.007.
Texto completo da fonteSibuh, Belay Zeleke, Sameer Quazi, Hrithika Panday, Ritika Parashar, Niraj Kumar Jha, Runjhun Mathur, Saurabh Kumar Jha, Pankaj Taneja e Abhimanyu Kumar Jha. "The Emerging Role of Epigenetics in Metabolism and Endocrinology". Biology 12, n.º 2 (6 de fevereiro de 2023): 256. http://dx.doi.org/10.3390/biology12020256.
Texto completo da fonteBridgeman, Stephanie, Wendy Northrop, Gaewyn Ellison, Thiru Sabapathy, Phillip E. Melton, Philip Newsholme e Cyril D. S. Mamotte. "Statins Do Not Directly Inhibit the Activity of Major Epigenetic Modifying Enzymes". Cancers 11, n.º 4 (10 de abril de 2019): 516. http://dx.doi.org/10.3390/cancers11040516.
Texto completo da fontePark, Lara K., Simonetta Friso e Sang-Woon Choi. "Nutritional influences on epigenetics and age-related disease". Proceedings of the Nutrition Society 71, n.º 1 (4 de novembro de 2011): 75–83. http://dx.doi.org/10.1017/s0029665111003302.
Texto completo da fonteIllam, Soorya P., Sruthi P. Kandiyil e Achuthan C. Raghavamenon. "Targeting Histone Onco- Modifications Using Plant-Derived Products". Current Drug Targets 22, n.º 11 (2 de agosto de 2021): 1317–31. http://dx.doi.org/10.2174/1389450122666210118150716.
Texto completo da fonteMora, Yuselin, María Elena Reyes, Louise Zanella, Bárbara Mora, Kurt Buchegger, Carmen Ili e Priscilla Brebi. "Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms". Pharmacogenomics 22, n.º 12 (agosto de 2021): 777–90. http://dx.doi.org/10.2217/pgs-2021-0020.
Texto completo da fonteMarkouli, Mariam, Dimitrios Strepkos e Christina Piperi. "Impact of Histone Modifications and Their Therapeutic Targeting in Hematological Malignancies". International Journal of Molecular Sciences 23, n.º 21 (7 de novembro de 2022): 13657. http://dx.doi.org/10.3390/ijms232113657.
Texto completo da fonteArif, K. M. Taufiqul, Esther K. Elliott, Larisa M. Haupt e Lyn R. Griffiths. "Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets". Cancers 12, n.º 10 (11 de outubro de 2020): 2922. http://dx.doi.org/10.3390/cancers12102922.
Texto completo da fonteKowluru, Renu A., Julia M. Santos e Manish Mishra. "Epigenetic Modifications and Diabetic Retinopathy". BioMed Research International 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/635284.
Texto completo da fonteAbdulsalam, Mustapha, Fatima Umar Hamza, Fatima Abubakar Saddeeq, Hafsa Hamisu Ibrahim, Hafsa Ahmad Isa Dutse e Aisha Mustapha Falaki. "Unveiling the Molecular Symphony: Exploring Mechanisms, Diversity and Applications of Restriction Enzymes in Biology". International Journal of Applied and Scientific Research 2, n.º 3 (30 de março de 2024): 325–42. http://dx.doi.org/10.59890/ijasr.v2i3.1554.
Texto completo da fonteMohammed, Hero I., Sahar Hassannejad e Hoshyar S. Ali. "Cancer Prevention by Epigenetic Modulation of Phytochemicals". Pharmacy and Applied Health Sciences 1, n.º 2 (30 de dezembro de 2022): 27–41. http://dx.doi.org/10.59480/phahs.v1i2.18.
Texto completo da fonteKadayifci, Fatma Zehra, Shasha Zheng e Yuan-Xiang Pan. "Molecular Mechanisms Underlying the Link between Diet and DNA Methylation". International Journal of Molecular Sciences 19, n.º 12 (14 de dezembro de 2018): 4055. http://dx.doi.org/10.3390/ijms19124055.
Texto completo da fonteButler, Jill S., e Sharon Y. R. Dent. "The role of chromatin modifiers in normal and malignant hematopoiesis". Blood 121, n.º 16 (18 de abril de 2013): 3076–84. http://dx.doi.org/10.1182/blood-2012-10-451237.
Texto completo da fonteWulansari, Noviana, Yanuar Alan Sulistio, Wahyu Handoko Wibowo Darsono, Chang-Hoon Kim e Sang-Hun Lee. "LIF maintains mouse embryonic stem cells pluripotency by modulating TET1 and JMJD2 activity in a JAK2-dependent manner". Stem Cells 39, n.º 6 (11 de fevereiro de 2021): 750–60. http://dx.doi.org/10.1002/stem.3345.
Texto completo da fontePethő, Gábor, Boglárka Kántás, Ádám Horváth e Erika Pintér. "The Epigenetics of Neuropathic Pain: A Systematic Update". International Journal of Molecular Sciences 24, n.º 24 (5 de dezembro de 2023): 17143. http://dx.doi.org/10.3390/ijms242417143.
Texto completo da fonte