Literatura científica selecionada sobre o tema "Epigenetic enzymes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Epigenetic enzymes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Epigenetic enzymes"
Zhang, Xiaolin, Zhen Dong e Hongjuan Cui. "Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer". Biomolecules 11, n.º 10 (25 de setembro de 2021): 1406. http://dx.doi.org/10.3390/biom11101406.
Texto completo da fonteKringel, Dario, Sebastian Malkusch e Jörn Lötsch. "Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis". International Journal of Molecular Sciences 22, n.º 14 (6 de julho de 2021): 7250. http://dx.doi.org/10.3390/ijms22147250.
Texto completo da fonteRamarao-Milne, Priya, Olga Kondrashova, Sinead Barry, John D. Hooper, Jason S. Lee e Nicola Waddell. "Histone Modifying Enzymes in Gynaecological Cancers". Cancers 13, n.º 4 (16 de fevereiro de 2021): 816. http://dx.doi.org/10.3390/cancers13040816.
Texto completo da fonteRuoß, Marc, Georg Damm, Massoud Vosough, Lisa Ehret, Carl Grom-Baumgarten, Martin Petkov, Silvio Naddalin et al. "Epigenetic Modifications of the Liver Tumor Cell Line HepG2 Increase Their Drug Metabolic Capacity". International Journal of Molecular Sciences 20, n.º 2 (16 de janeiro de 2019): 347. http://dx.doi.org/10.3390/ijms20020347.
Texto completo da fonteMaleszewska, Marta, Bartosz Wojtas, Bartlomiej Gielniewski, Shamba Mondal, Jakub Mieczkowski, Michal Dabrowski, Janusz Siedlecki et al. "ECOA-6. Genomic and transcriptomic analyses reveal diverse mechanisms responsible for deregulation of epigenetic enzyme/modifier expression in glioblastoma". Neuro-Oncology Advances 3, Supplement_2 (1 de julho de 2021): ii2. http://dx.doi.org/10.1093/noajnl/vdab070.006.
Texto completo da fonteAmsalem, Zohar, Tasleem Arif, Anna Shteinfer-Kuzmine, Vered Chalifa-Caspi e Varda Shoshan-Barmatz. "The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link". Cancers 12, n.º 4 (22 de abril de 2020): 1031. http://dx.doi.org/10.3390/cancers12041031.
Texto completo da fonteJelinek, Mary Anne. "Biochemical Assays for Epigenetic Enzymes". Genetic Engineering & Biotechnology News 36, n.º 15 (setembro de 2016): 16–17. http://dx.doi.org/10.1089/gen.36.15.08.
Texto completo da fonteJasim, Dr Hiba Sabah. "The Role of Epigenetic Drugs in Cancer Therapy". South Asian Research Journal of Medical Sciences 4, n.º 4 (25 de agosto de 2022): 54–62. http://dx.doi.org/10.36346/sarjms.2022.v04i04.001.
Texto completo da fonteAlghamdi, Bandar Ali, Intisar Mahmoud Aljohani, Bandar Ghazi Alotaibi, Muhammad Ahmed, Kholod Abduallah Almazmomi, Salman Aloufi e Jowhra Alshamrani. "Studying Epigenetics of Cardiovascular Diseases on Chip Guide". Cardiogenetics 12, n.º 3 (7 de julho de 2022): 218–34. http://dx.doi.org/10.3390/cardiogenetics12030021.
Texto completo da fonteBunsick, David A., Jenna Matsukubo e Myron R. Szewczuk. "Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform". Cancers 15, n.º 4 (6 de fevereiro de 2023): 1030. http://dx.doi.org/10.3390/cancers15041030.
Texto completo da fonteTeses / dissertações sobre o assunto "Epigenetic enzymes"
Herrlinger, Eva-Maria [Verfasser], e Manfred [Akademischer Betreuer] Jung. "Bioreductive prodrugs for the targeting of epigenetic enzymes". Freiburg : Universität, 2020. http://d-nb.info/1217193758/34.
Texto completo da fonteSaladi, SrinivasVinod. "SWI/SNF Chromatin Remodeling Enzymes: Epigenetic Modulators in Melanoma Invasiveness and Survival". University of Toledo Health Science Campus / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=mco1310065995.
Texto completo da fonteStamatakos, Serena <1993>. "Effects of 3,4-methylenedioxymethamphetamine (MDMA) on BDNF pathway, HDAC epigenetic enzymes and neurofilament proteins". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10104/1/PhD_Thesis_StamatakosSerena.pdf.
Texto completo da fontePhipps, Sharla Marion Ostein. "Genetic and epigenetic modulation of telomerase activity in development and disease". Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/phipps.pdf.
Texto completo da fonteAdditional advisors: Vithal K. Ghanta, J. Michael Ruppert, Theresa V. Strong, R. Douglas Watson. Description based on contents viewed Oct. 3, 2008; title from PDF t.p. Includes bibliographical references.
Huang, Hsien-Sung. "Epigenetic Determinants of Altered Gene Expression in Schizophrenia: a Dissertation". eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/365.
Texto completo da fonteMehta, Ninad T. "Early Epigenetic Regulation of the Adaptive Immune Response Gene CIITA". Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/biology_theses/24.
Texto completo da fonteTruax, Agnieszka D. "The 26S Proteasome and Histone Modifying Enzymes Regulate". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/biology_diss/91.
Texto completo da fonteIslam, Abul 1978. "Delineating epigenetic regulatory mechanisms of cell profileration and differentiation". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/85721.
Texto completo da fonteLos avances recientes en las tecnologías de alto flujo han abierto el camino a los estudios sistemáticos de los mecanismos epigenéticos. La proteína retinoblastoma (pRB), uno de los elementos de la ruta de supresión de tumores RB/E2F que se encuentra desregulado con frecuencia en el cáncer, es uno de los componentes esenciales de la regulación del ciclo celular y la diferenciación. Sin embargo, aún no se conoce de qué manera precisa la diferenciación se acopla a la detención del avance del ciclo celular y si hay algún mecanismo epigenético vinculado a este proceso. En este estudio, he analizado los niveles de expresión de histona metiltransferasas (HMT) y desmetilasas humanas (HDM), así como sus dianas en cánceres humanos, y me he centrado en la conexión de RB/KDM5A en el control del ciclo celular y la diferenciación. Específicamente, utilicé Drosophila como modelo para describir un mecanismo nuevo mediante el cual RB/E2F interactúa con la ruta Hippo de supresión de tumores para controlar de manera sinérgica la detención del ciclo celular relacionada con la diferenciación. Mediante la investigación del papel de miR-11, determiné que su función altamente especializada es la inhibición de la muerte celular inducida por dE2F1. Además, estudié la inducción de la diferenciación y la apoptosis como consecuencia de la pérdida de KDMA5 en células obtenidas a partir de ratones sin Rb. Extraje como conclusión que, durante la diferenciación, KDMA5 desempeña un papel esencial sobre los estimuladores de los genes específicos de los tipos celulares, así como en los promotores de las dianas de E2F; en cooperación con otros complejos represores silencia a los genes del ciclo celular. Investigué el mecanismo de reclutamiento de KDM5A y encontré que se une al sitio de inicio de la transcripción de la mayoría de los genes que poseen metilación en H3K4. Estos genes tienen elevados niveles de expresión, están involucrados en determinados procesos biológicos y están ocupados por diferentes isoformas de KDM5A. KDM5A desempeña un papel único y no redundante en la desmetilación de las histonas y que en gran medida se solapa con la enzima con la función opuesta, MLL1. Para terminar, encontré que las enzimas HMT y HDM muestran patrones de co-expresión distintos en diferentes tipos de cáncer, y que este hecho determina los niveles de expresión de sus genes diana.
Koues, Olivia I. "The Epigenetic Regulation of Cytokine Inducible Mammalian Transcription by the 26S Proteasome". Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/biology_diss/59.
Texto completo da fonteJiang, Zhongliang. "Epigenetic Instability Induced by DNA Base Lesion via DNA Base Excision Repair". FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3566.
Texto completo da fonteLivros sobre o assunto "Epigenetic enzymes"
Marmorstein, Ronen. Enzymes of Epigenetics. Elsevier Science & Technology, 2016.
Encontre o texto completo da fonteMarmorstein, Ronen. Enzymes of Epigenetics. Elsevier Science & Technology Books, 2016.
Encontre o texto completo da fonteEnzymes of Epigenetics, Part A. Elsevier, 2016. http://dx.doi.org/10.1016/s0076-6879(16)x0005-5.
Texto completo da fonteEnzymes of Epigenetics, Part B. Elsevier, 2016. http://dx.doi.org/10.1016/s0076-6879(16)x0006-7.
Texto completo da fonteMarmorstein, Ronen. Enzymes of Epigenetics Part B. Elsevier Science & Technology Books, 2016.
Encontre o texto completo da fonteMarmorstein, Ronen. Enzymes of Epigenetics Part B. Elsevier Science & Technology Books, 2016.
Encontre o texto completo da fontePharmaceutical Biocatalysis: Drugs, Genetic Diseases, and Epigenetics. Jenny Stanford Publishing, 2020.
Encontre o texto completo da fonteGrunwald, Peter. Pharmaceutical Biocatalysis: Drugs, Genetic Diseases, and Epigenetics. Jenny Stanford Publishing, 2020.
Encontre o texto completo da fonteGrunwald, Peter. Pharmaceutical Biocatalysis: Drugs, Genetic Diseases, and Epigenetics. Jenny Stanford Publishing, 2020.
Encontre o texto completo da fonteGrunwald, Peter. Pharmaceutical Biocatalysis: Drugs, Genetic Diseases, and Epigenetics. Jenny Stanford Publishing, 2020.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Epigenetic enzymes"
Dalmizrak, Aysegul, e Ozlem Dalmizrak. "Epigenetic Enzymes and Their Mutations in Cancer". In Epigenetics and Human Health, 31–76. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42365-9_2.
Texto completo da fonteGanai, Shabir Ahmad. "Overview of Epigenetic Signatures and Their Regulation by Epigenetic Modification Enzymes". In Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy, 1–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8179-3_1.
Texto completo da fonteParo, Renato, Ueli Grossniklaus, Raffaella Santoro e Anton Wutz. "Epigenetics and Metabolism". In Introduction to Epigenetics, 179–201. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_9.
Texto completo da fonteGanesan, A. "The Discovery of Anticancer Drugs Targeting Epigenetic Enzymes". In Analogue-Based Drug Discovery III, 111–39. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651085.ch5.
Texto completo da fonteGanai, Shabir Ahmad. "Epigenetic Enzymes and Drawbacks of Conventional Therapeutic Regimens". In Histone Deacetylase Inhibitors — Epidrugs for Neurological Disorders, 11–19. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8019-8_2.
Texto completo da fonteGanai, Shabir Ahmad. "Epigenetic Regulator Enzymes and Their Implications in Distinct Malignancies". In Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy, 35–65. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8179-3_2.
Texto completo da fonteParo, Renato, Ueli Grossniklaus, Raffaella Santoro e Anton Wutz. "Chromatin Dynamics". In Introduction to Epigenetics, 29–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_2.
Texto completo da fonteParo, Renato, Ueli Grossniklaus, Raffaella Santoro e Anton Wutz. "Biology of Chromatin". In Introduction to Epigenetics, 1–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_1.
Texto completo da fonteGanai, Shabir Ahmad. "Modulating Epigenetic Modification Enzymes Through Relevant Epidrugs as a Timely Strategy in Anticancer Therapy". In Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy, 137–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8179-3_7.
Texto completo da fonteZeng, Hao, e Wei Xu. "Enzymatic Assays of Histone Methyltransferase Enzymes". In Epigenetic Technological Applications, 333–61. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-801080-8.00016-8.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Epigenetic enzymes"
Venkatesan, Thiagarajan, Umamaheswari Natarajan e Appu Rathinavelu. "Abstract 4681: Effect of SAHA on epigenetic chromatin modification enzymes in LNCaP and MCF-7 cells". In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4681.
Texto completo da fonteCabang, April B., Yuan Fang, Jay Morris e Michael J. Wargovich. "Abstract 410: Epigallocatechin gallate inhibits colon cancer cell proliferation by modulating epigenetic enzymes (DNMTs, HDACs, and HATs)". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-410.
Texto completo da fonteMateen, Samiha, Komal Raina, Chapla Agarwal e Rajesh Agarwal. "Abstract 3796: Inhibition of epigenetic chromatin-modification enzymes: histone deacetylases and DNA methyltransferases by silibinin in human NSCLC H1299 cells". In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3796.
Texto completo da fontePappa, Aglaia, Ioannis Anestopoulos, Alexandros Kontopoulos, Ariel Klavaris e Mihalis Panayiotidis. "The anticancer potential of silibinin is associated with alterations in gene expression levels of major epigenetic enzymes in prostate carcinoma". In The 1st International E-Conference on Antioxidants in Health and Disease. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/cahd2020-08862.
Texto completo da fonteSengupta, Surojeet, Shuait Nair, Lu Jin, Catherine M. Sevigny, Brandon Jones e Robert Clarke. "Abstract PS17-50: Nuclear expression of acetyl-CoA producing enzymes and their roles in epigenetic reprogramming in breast cancer cells". In Abstracts: 2020 San Antonio Breast Cancer Virtual Symposium; December 8-11, 2020; San Antonio, Texas. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.sabcs20-ps17-50.
Texto completo da fonteDent, Sharon Y. R., Boyko Atanassov, Calley Hirsch, Evangelia Koutelou e John Latham. "Abstract IA07: New functions for histone modifying enzymes". In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-ia07.
Texto completo da fonteSchreiber, Stuart L. "Abstract IA25: Linking genetic features of human cancers and histone-modifying enzymes for future cancer therapies". In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-ia25.
Texto completo da fonteKeung, Emily Z., Kunal Rai, Kadir C. Akdemir, Liren Li, Sneha Sharma, Bryce Axelrad e Lynda Chin. "Abstract LB-134: The identification and characterization of MLL2, an epigenetic enzyme, as a novel tumor suppressor in melanoma". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-lb-134.
Texto completo da fonteVerrijzer, Peter. "Abstract IA09: Nucleotide biosynthetic enzyme GMP Synthase is a relay of p53 stabilization in response to genomic stress". In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-ia09.
Texto completo da fonteLee, Jin-Hee, Melissa Boersma, Bing Yang, Nathan Damaschke, Eva Corey, John Denu e David F. Jarrard. "Abstract 5389: A personalized medicine approach to identifying dysregulated epigenetic enzyme activity in the development of castrate-resistant prostate cancer". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5389.
Texto completo da fonteRelatórios de organizações sobre o assunto "Epigenetic enzymes"
Meiri, Noam, Michael D. Denbow e Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, novembro de 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Texto completo da fonte