Artigos de revistas sobre o tema "Ensemble neural noise"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ensemble neural noise".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Timme, Nicholas M., David Linsenbardt e Christopher C. Lapish. "A Method to Present and Analyze Ensembles of Information Sources". Entropy 22, n.º 5 (21 de maio de 2020): 580. http://dx.doi.org/10.3390/e22050580.
Texto completo da fonteNanni, Loris, Gianluca Maguolo, Sheryl Brahnam e Michelangelo Paci. "An Ensemble of Convolutional Neural Networks for Audio Classification". Applied Sciences 11, n.º 13 (22 de junho de 2021): 5796. http://dx.doi.org/10.3390/app11135796.
Texto completo da fonteSheng, Chunyang, Haixia Wang, Xiao Lu, Zhiguo Zhang, Wei Cui e Yuxia Li. "Distributed Gaussian Granular Neural Networks Ensemble for Prediction Intervals Construction". Complexity 2019 (3 de julho de 2019): 1–17. http://dx.doi.org/10.1155/2019/2379584.
Texto completo da fonteChaouachi, Aymen, Rashad M. Kamel e Ken Nagasaka. "Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting". Journal of Advanced Computational Intelligence and Intelligent Informatics 14, n.º 1 (20 de janeiro de 2010): 69–75. http://dx.doi.org/10.20965/jaciii.2010.p0069.
Texto completo da fonteNoh, Kyoungjin, e Joon-Hyuk Chang. "Deep neural network ensemble for reducing artificial noise in bandwidth extension". Digital Signal Processing 102 (julho de 2020): 102760. http://dx.doi.org/10.1016/j.dsp.2020.102760.
Texto completo da fonteHe, Lei, Xiaohong Shen, Muhang Zhang e Haiyan Wang. "Discriminative Ensemble Loss for Deep Neural Network on Classification of Ship-Radiated Noise". IEEE Signal Processing Letters 28 (2021): 449–53. http://dx.doi.org/10.1109/lsp.2021.3057539.
Texto completo da fonteDai, Feng Yan, Zhao Yao Shi e Jia Chun Lin. "Research of Defect Detection Method Noise for Bevel Gear". Advanced Materials Research 889-890 (fevereiro de 2014): 722–25. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.722.
Texto completo da fonteEt. al., Rajesh Birok,. "ECG Denoising Using Artificial Neural Networks and Complete Ensemble Empirical Mode Decomposition". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, n.º 2 (10 de abril de 2021): 2382–89. http://dx.doi.org/10.17762/turcomat.v12i2.2033.
Texto completo da fonteJin, Dequan, Jigen Peng e Bin Li. "A New Clustering Approach on the Basis of Dynamical Neural Field". Neural Computation 23, n.º 8 (agosto de 2011): 2032–57. http://dx.doi.org/10.1162/neco_a_00153.
Texto completo da fonteChen, Kai, Kai Xie, Chang Wen e Xin-Gong Tang. "Weak Signal Enhance Based on the Neural Network Assisted Empirical Mode Decomposition". Sensors 20, n.º 12 (15 de junho de 2020): 3373. http://dx.doi.org/10.3390/s20123373.
Texto completo da fonteZahid, Saadia, Fawad Hussain, Muhammad Rashid, Muhammad Haroon Yousaf e Hafiz Adnan Habib. "Optimized Audio Classification and Segmentation Algorithm by Using Ensemble Methods". Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/209814.
Texto completo da fonteHARTONO, PITOYO, e SHUJI HASHIMOTO. "EXTRACTING THE PRINCIPAL BEHAVIOR OF A PROBABILISTIC SUPERVISOR THROUGH NEURAL NETWORKS ENSEMBLE". International Journal of Neural Systems 12, n.º 03n04 (junho de 2002): 291–301. http://dx.doi.org/10.1142/s0129065702001126.
Texto completo da fonteDey, Subhrajit, Rajdeep Bhattacharya, Friedhelm Schwenker e Ram Sarkar. "Median Filter Aided CNN Based Image Denoising: An Ensemble Approach". Algorithms 14, n.º 4 (28 de março de 2021): 109. http://dx.doi.org/10.3390/a14040109.
Texto completo da fonteHu, Sile, Qiaosheng Zhang, Jing Wang e Zhe Chen. "Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity". Journal of Neurophysiology 119, n.º 4 (1 de abril de 2018): 1394–410. http://dx.doi.org/10.1152/jn.00684.2017.
Texto completo da fonteAhn, J., L. J. Kreeger, S. T. Lubejko, D. A. Butts e K. M. MacLeod. "Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information". Journal of Neurophysiology 111, n.º 11 (1 de junho de 2014): 2320–31. http://dx.doi.org/10.1152/jn.00836.2013.
Texto completo da fonteAhn, Byeongyong, Gu Yong Park, Yoonsik Kim e Nam Ik Cho. "A Self-ensemble Approach for Noise and Compression Artifacts Removal using Convolutional Neural Network". IEIE Transactions on Smart Processing & Computing 7, n.º 4 (31 de agosto de 2018): 296–304. http://dx.doi.org/10.5573/ieiespc.2018.7.4.296.
Texto completo da fonteWu, Jianfeng, Yongzhu Hua, Shengying Yang, Hongshuai Qin e Huibin Qin. "Speech Enhancement Using Generative Adversarial Network by Distilling Knowledge from Statistical Method". Applied Sciences 9, n.º 16 (18 de agosto de 2019): 3396. http://dx.doi.org/10.3390/app9163396.
Texto completo da fonteMężyk, Miłosz, Michał Chamarczuk e Michał Malinowski. "Automatic Image-Based Event Detection for Large-N Seismic Arrays Using a Convolutional Neural Network". Remote Sensing 13, n.º 3 (23 de janeiro de 2021): 389. http://dx.doi.org/10.3390/rs13030389.
Texto completo da fonteMashhadi, Peyman Sheikholharam, Sławomir Nowaczyk e Sepideh Pashami. "Stacked Ensemble of Recurrent Neural Networks for Predicting Turbocharger Remaining Useful Life". Applied Sciences 10, n.º 1 (20 de dezembro de 2019): 69. http://dx.doi.org/10.3390/app10010069.
Texto completo da fonteRajaraman, Sivaramakrishnan, Sudhir Sornapudi, Philip O. Alderson, Les R. Folio e Sameer K. Antani. "Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs". PLOS ONE 15, n.º 11 (12 de novembro de 2020): e0242301. http://dx.doi.org/10.1371/journal.pone.0242301.
Texto completo da fonteKwon, Jihoon, e Nojun Kwak. "Radar Application: Stacking Multiple Classifiers for Human Walking Detection Using Micro-Doppler Signals". Applied Sciences 9, n.º 17 (28 de agosto de 2019): 3534. http://dx.doi.org/10.3390/app9173534.
Texto completo da fonteScheuerer, Michael, Matthew B. Switanek, Rochelle P. Worsnop e Thomas M. Hamill. "Using Artificial Neural Networks for Generating Probabilistic Subseasonal Precipitation Forecasts over California". Monthly Weather Review 148, n.º 8 (31 de julho de 2020): 3489–506. http://dx.doi.org/10.1175/mwr-d-20-0096.1.
Texto completo da fonteFallahian, Milad, Faramarz Khoshnoudian e Viviana Meruane. "Ensemble classification method for structural damage assessment under varying temperature". Structural Health Monitoring 17, n.º 4 (7 de julho de 2017): 747–62. http://dx.doi.org/10.1177/1475921717717311.
Texto completo da fonteHou, Sizu, e Wei Guo. "Faulty Line Selection Based on Modified CEEMDAN Optimal Denoising Smooth Model and Duffing Oscillator for Un-Effectively Grounded System". Mathematical Problems in Engineering 2020 (6 de abril de 2020): 1–21. http://dx.doi.org/10.1155/2020/5761642.
Texto completo da fonteFishman, Yonatan I., e Mitchell Steinschneider. "Spectral Resolution of Monkey Primary Auditory Cortex (A1) Revealed With Two-Noise Masking". Journal of Neurophysiology 96, n.º 3 (setembro de 2006): 1105–15. http://dx.doi.org/10.1152/jn.00124.2006.
Texto completo da fonteKim, Sungil, Baehyun Min, Seoyoon Kwon e Min-gon Chu. "History Matching of a Channelized Reservoir Using a Serial Denoising Autoencoder Integrated with ES-MDA". Geofluids 2019 (16 de abril de 2019): 1–22. http://dx.doi.org/10.1155/2019/3280961.
Texto completo da fonteTian, Juan, e Yingxiang Li. "Convolutional Neural Networks for Steganalysis via Transfer Learning". International Journal of Pattern Recognition and Artificial Intelligence 33, n.º 02 (24 de outubro de 2018): 1959006. http://dx.doi.org/10.1142/s0218001419590067.
Texto completo da fonteJiang, Zhencun, Zhengxin Dong, Lingyang Wang e Wenping Jiang. "Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model". Computational Intelligence and Neuroscience 2021 (21 de agosto de 2021): 1–12. http://dx.doi.org/10.1155/2021/7529893.
Texto completo da fonteKnuth, Kevin H., Ankoor S. Shah, Wilson A. Truccolo, Mingzhou Ding, Steven L. Bressler e Charles E. Schroeder. "Differentially Variable Component Analysis: Identifying Multiple Evoked Components Using Trial-to-Trial Variability". Journal of Neurophysiology 95, n.º 5 (maio de 2006): 3257–76. http://dx.doi.org/10.1152/jn.00663.2005.
Texto completo da fonteMa, Jianpeng, Zhenghui Li, Chengwei Li, Liwei Zhan e Guang-Zhu Zhang. "Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network". Entropy 23, n.º 2 (23 de fevereiro de 2021): 259. http://dx.doi.org/10.3390/e23020259.
Texto completo da fonteXie, Yingchun, Yucheng Xiao, Xuyan Liu, Guijie Liu, Weixiong Jiang e Jin Qin. "Time-Frequency Distribution Map-Based Convolutional Neural Network (CNN) Model for Underwater Pipeline Leakage Detection Using Acoustic Signals". Sensors 20, n.º 18 (4 de setembro de 2020): 5040. http://dx.doi.org/10.3390/s20185040.
Texto completo da fonteAntoniades, Andreas, Loukianos Spyrou, David Martin-Lopez, Antonio Valentin, Gonzalo Alarcon, Saeid Sanei e Clive Cheong Took. "Deep Neural Architectures for Mapping Scalp to Intracranial EEG". International Journal of Neural Systems 28, n.º 08 (26 de agosto de 2018): 1850009. http://dx.doi.org/10.1142/s0129065718500090.
Texto completo da fonteWang, Jing, Guigen Nie, Shengjun Gao, Shuguang Wu, Haiyang Li e Xiaobing Ren. "Landslide Deformation Prediction Based on a GNSS Time Series Analysis and Recurrent Neural Network Model". Remote Sensing 13, n.º 6 (10 de março de 2021): 1055. http://dx.doi.org/10.3390/rs13061055.
Texto completo da fonteAltuve, Miguel, Paula Lizarazo e Javier Villamizar. "Human activity recognition using improved complete ensemble EMD with adaptive noise and long short-term memory neural networks". Biocybernetics and Biomedical Engineering 40, n.º 3 (julho de 2020): 901–9. http://dx.doi.org/10.1016/j.bbe.2020.04.007.
Texto completo da fonteCao, Yang, Xiaokang Zhou e Ke Yan. "Deep Learning Neural Network Model for Tunnel Ground Surface Settlement Prediction Based on Sensor Data". Mathematical Problems in Engineering 2021 (27 de agosto de 2021): 1–14. http://dx.doi.org/10.1155/2021/9488892.
Texto completo da fonteAkpudo, Ugochukwu Ejike, e Jang-Wook Hur. "A CEEMDAN-Assisted Deep Learning Model for the RUL Estimation of Solenoid Pumps". Electronics 10, n.º 17 (25 de agosto de 2021): 2054. http://dx.doi.org/10.3390/electronics10172054.
Texto completo da fonteRudd, Michael E., e Lawrence G. Brown. "Noise Adaptation in Integrate-and-Fire Neurons". Neural Computation 9, n.º 5 (1 de julho de 1997): 1047–69. http://dx.doi.org/10.1162/neco.1997.9.5.1047.
Texto completo da fonteWu, Jiang, Feng Miu e Taiyong Li. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market". Energies 13, n.º 7 (10 de abril de 2020): 1852. http://dx.doi.org/10.3390/en13071852.
Texto completo da fonteNti, Isaac Kofi, Adebayo Felix Adekoya e Benjamin Asubam Weyori. "Efficient Stock-Market Prediction Using Ensemble Support Vector Machine". Open Computer Science 10, n.º 1 (4 de julho de 2020): 153–63. http://dx.doi.org/10.1515/comp-2020-0199.
Texto completo da fonteMousavi, Asma Alsadat, Chunwei Zhang, Sami F. Masri e Gholamreza Gholipour. "Structural Damage Localization and Quantification Based on a CEEMDAN Hilbert Transform Neural Network Approach: A Model Steel Truss Bridge Case Study". Sensors 20, n.º 5 (26 de fevereiro de 2020): 1271. http://dx.doi.org/10.3390/s20051271.
Texto completo da fonteGeorges, Hassana Maigary, Dong Wang e Zhu Xiao. "GNSS/Low-Cost MEMS-INS Integration Using Variational Bayesian Adaptive Cubature Kalman Smoother and Ensemble Regularized ELM". Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/682907.
Texto completo da fonteWu, Jiang, Tengfei Zhou e Taiyong Li. "A Hybrid Approach Integrating Multiple ICEEMDANs, WOA, and RVFL Networks for Economic and Financial Time Series Forecasting". Complexity 2020 (22 de outubro de 2020): 1–17. http://dx.doi.org/10.1155/2020/9318308.
Texto completo da fonteKrasnopolsky, Vladimir, Sudhir Nadiga, Avichal Mehra, Eric Bayler e David Behringer. "Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations". Computational Intelligence and Neuroscience 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6156513.
Texto completo da fonteOpitz, D., e R. Maclin. "Popular Ensemble Methods: An Empirical Study". Journal of Artificial Intelligence Research 11 (1 de agosto de 1999): 169–98. http://dx.doi.org/10.1613/jair.614.
Texto completo da fonteHan, Te, Dongxiang Jiang, Qi Zhao, Lei Wang e Kai Yin. "Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery". Transactions of the Institute of Measurement and Control 40, n.º 8 (1 de junho de 2017): 2681–93. http://dx.doi.org/10.1177/0142331217708242.
Texto completo da fonteSaghi, Faramarz, e Mustafa Jahangoshai Rezaee. "An ensemble approach based on transformation functions for natural gas price forecasting considering optimal time delays". PeerJ Computer Science 7 (7 de abril de 2021): e409. http://dx.doi.org/10.7717/peerj-cs.409.
Texto completo da fonteSarmiento, Carlos, e Jesus Savage. "Comparison of Two Objects Classification Techniques using Hidden Markov Models and Convolutional Neural Networks". Informatics and Automation 19, n.º 6 (11 de dezembro de 2020): 1222–54. http://dx.doi.org/10.15622/ia.2020.19.6.4.
Texto completo da fonteDeweese, Michael R., e Anthony M. Zador. "Shared and Private Variability in the Auditory Cortex". Journal of Neurophysiology 92, n.º 3 (setembro de 2004): 1840–55. http://dx.doi.org/10.1152/jn.00197.2004.
Texto completo da fonteЖарикова, Е. П., Я. Ю. Григорьев e А. Л. Григорьева. "Application of neural networks for water area analysis". MORSKIE INTELLEKTUAL`NYE TEHNOLOGII), n.º 2(52) (20 de junho de 2021): 129–33. http://dx.doi.org/10.37220/mit.2021.52.2.063.
Texto completo da fonteRedlich, A. Norman. "Redundancy Reduction as a Strategy for Unsupervised Learning". Neural Computation 5, n.º 2 (março de 1993): 289–304. http://dx.doi.org/10.1162/neco.1993.5.2.289.
Texto completo da fonte