Literatura científica selecionada sobre o tema "Ensemble neural noise"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Ensemble neural noise".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Ensemble neural noise"
Timme, Nicholas M., David Linsenbardt, and Christopher C. Lapish. "A Method to Present and Analyze Ensembles of Information Sources." Entropy 22, no. 5 (May 21, 2020): 580. http://dx.doi.org/10.3390/e22050580.
Texto completo da fonteNanni, Loris, Gianluca Maguolo, Sheryl Brahnam, and Michelangelo Paci. "An Ensemble of Convolutional Neural Networks for Audio Classification." Applied Sciences 11, no. 13 (June 22, 2021): 5796. http://dx.doi.org/10.3390/app11135796.
Texto completo da fonteSheng, Chunyang, Haixia Wang, Xiao Lu, Zhiguo Zhang, Wei Cui, and Yuxia Li. "Distributed Gaussian Granular Neural Networks Ensemble for Prediction Intervals Construction." Complexity 2019 (July 3, 2019): 1–17. http://dx.doi.org/10.1155/2019/2379584.
Texto completo da fonteChaouachi, Aymen, Rashad M. Kamel, and Ken Nagasaka. "Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting." Journal of Advanced Computational Intelligence and Intelligent Informatics 14, no. 1 (January 20, 2010): 69–75. http://dx.doi.org/10.20965/jaciii.2010.p0069.
Texto completo da fonteNoh, Kyoungjin, and Joon-Hyuk Chang. "Deep neural network ensemble for reducing artificial noise in bandwidth extension." Digital Signal Processing 102 (July 2020): 102760. http://dx.doi.org/10.1016/j.dsp.2020.102760.
Texto completo da fonteHe, Lei, Xiaohong Shen, Muhang Zhang, and Haiyan Wang. "Discriminative Ensemble Loss for Deep Neural Network on Classification of Ship-Radiated Noise." IEEE Signal Processing Letters 28 (2021): 449–53. http://dx.doi.org/10.1109/lsp.2021.3057539.
Texto completo da fonteDai, Feng Yan, Zhao Yao Shi, and Jia Chun Lin. "Research of Defect Detection Method Noise for Bevel Gear." Advanced Materials Research 889-890 (February 2014): 722–25. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.722.
Texto completo da fonteEt. al., Rajesh Birok,. "ECG Denoising Using Artificial Neural Networks and Complete Ensemble Empirical Mode Decomposition." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 10, 2021): 2382–89. http://dx.doi.org/10.17762/turcomat.v12i2.2033.
Texto completo da fonteJin, Dequan, Jigen Peng, and Bin Li. "A New Clustering Approach on the Basis of Dynamical Neural Field." Neural Computation 23, no. 8 (August 2011): 2032–57. http://dx.doi.org/10.1162/neco_a_00153.
Texto completo da fonteChen, Kai, Kai Xie, Chang Wen, and Xin-Gong Tang. "Weak Signal Enhance Based on the Neural Network Assisted Empirical Mode Decomposition." Sensors 20, no. 12 (June 15, 2020): 3373. http://dx.doi.org/10.3390/s20123373.
Texto completo da fonteTeses / dissertações sobre o assunto "Ensemble neural noise"
Brown, Daniel. "Origins and use of the stochastic and sound-evoked extracellular activity of the auditory nerve." University of Western Australia. Dept. of Physiology, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0082.
Texto completo da fonteGómez, Cerdà Vicenç. "Algorithms and complex phenomena in networks: Neural ensembles, statistical, interference and online communities." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7548.
Texto completo da fonteDam, Hai Huong Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "A scalable evolutionary learning classifier system for knowledge discovery in stream data mining." Awarded by:University of New South Wales - Australian Defence Force Academy, 2008. http://handle.unsw.edu.au/1959.4/38865.
Texto completo da fonteBharmauria, Vishal. "Investigating the encoding of visual stimuli by forming neural circuits in the cat primary visual cortex." Thèse, 2016. http://hdl.handle.net/1866/14129.
Texto completo da fonteCapítulos de livros sobre o assunto "Ensemble neural noise"
Çatak, Ferhat Özgür. "Robust Ensemble Classifier Combination Based on Noise Removal with One-Class SVM." In Neural Information Processing, 10–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26535-3_2.
Texto completo da fonteLibralon, Giampaolo L., André C. Ponce Leon Ferreira Carvalho, and Ana C. Lorena. "Ensembles of Pre-processing Techniques for Noise Detection in Gene Expression Data." In Advances in Neuro-Information Processing, 486–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02490-0_60.
Texto completo da fonteSzukalski, Szymon K., Robert J. Cox, and Patricia S. Crowther. "Using Artificial Neural Network Ensembles to Extract Data Content from Noisy Data." In Lecture Notes in Computer Science, 974–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11553939_137.
Texto completo da fonteFestag, Sven, and Cord Spreckelsen. "Semantic Anomaly Detection in Medical Time Series." In German Medical Data Sciences: Bringing Data to Life. IOS Press, 2021. http://dx.doi.org/10.3233/shti210059.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Ensemble neural noise"
Zhihua, Gao, Ben Kerong, and Cui Lilin. "Noise Source Recognition Based on Two-Level Architecture Neural Network Ensemble for Incremental Learning." In 2009 International Conference on Dependable, Autonomic and Secure Computing (DASC). IEEE, 2009. http://dx.doi.org/10.1109/dasc.2009.11.
Texto completo da fonteAk, Ronay, Moneer M. Helu, and Sudarsan Rachuri. "Ensemble Neural Network Model for Predicting the Energy Consumption of a Milling Machine." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47957.
Texto completo da fonteSengupta, Ushnish, Carl E. Rasmussen, and Matthew P. Juniper. "Bayesian Machine Learning for the Prognosis of Combustion Instabilities From Noise." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14904.
Texto completo da fonteWu, Tsung-Liang, and Yu-Chun Hwang. "Failure Detection for Multiple Micro-Punches Outfitted in Progressive Piercing Processes With Artificial Intelligent Model." In ASME 2019 28th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/isps2019-7494.
Texto completo da fonteYang, Dongdong, Senzhang Wang, and Zhoujun Li. "Ensemble Neural Relation Extraction with Adaptive Boosting." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/630.
Texto completo da fonteHartono, P., and S. Hashimoto. "Effective learning in noisy environment using neural network ensemble." In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. http://dx.doi.org/10.1109/ijcnn.2000.857894.
Texto completo da fonteYang, Lijian, Ya Jia, and Ming Yi. "The effects of electrical coupling on the temporal coding of neural signal in noisy Hodgkin-Huxley neuron ensemble." In 2010 Sixth International Conference on Natural Computation (ICNC). IEEE, 2010. http://dx.doi.org/10.1109/icnc.2010.5583237.
Texto completo da fonteHe, Kexin, Yuhan Shen, and Wei-Qiang Zhang. "Multiple Neural Networks with Ensemble Method for Audio Tagging with Noisy Labels and Minimal Supervision." In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/r7nr-v396.
Texto completo da fonte