Literatura científica selecionada sobre o tema "Energy metabolism"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Energy metabolism".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Energy metabolism"
Perera, PAJ, e Faiz MMT Marikar. "Energy Metabolism". Bangladesh Journal of Medical Biochemistry 6, n.º 2 (13 de janeiro de 2014): 68–76. http://dx.doi.org/10.3329/bjmb.v6i2.17646.
Texto completo da fonteAlmeida Castro, Luis Henrique, Leandro Rachel Arguello, Nelson Thiago Andrade Ferreira, Geanlucas Mendes Monteiro, Jessica Alves Ribeiro, Juliana Vicente de Souza, Sarita Baltuilhe dos Santos et al. "Energy metabolism". International Journal for Innovation Education and Research 8, n.º 9 (1 de setembro de 2020): 359–68. http://dx.doi.org/10.31686/ijier.vol8.iss9.2643.
Texto completo da fonteFlight, Monica Hoyos. "Shifting energy metabolism". Nature Reviews Drug Discovery 9, n.º 4 (abril de 2010): 272. http://dx.doi.org/10.1038/nrd3146.
Texto completo da fonteGutierrez, Guillermo, Fernando Palizas e Carlo E. Marini. "Cellular Energy Metabolism". Chest 97, n.º 4 (abril de 1990): 975–82. http://dx.doi.org/10.1378/chest.97.4.975.
Texto completo da fonteLochner, A. "Myocardial energy metabolism". Cardiovascular Drugs and Therapy 4, n.º 3 (maio de 1990): 756. http://dx.doi.org/10.1007/bf01856567.
Texto completo da fonteCrunkhorn, Sarah. "Disrupting energy metabolism". Nature Reviews Drug Discovery 17, n.º 10 (outubro de 2018): 708. http://dx.doi.org/10.1038/nrd.2018.172.
Texto completo da fonteBlum, J. Joseph. "Energy metabolism inLeishmania". Journal of Bioenergetics and Biomembranes 26, n.º 2 (abril de 1994): 147–55. http://dx.doi.org/10.1007/bf00763063.
Texto completo da fonteAlcaraz, Miquel. "Pavlova E.V. Movement and energy metabolism of marine planktonic organisms". Scientia Marina 70, n.º 4 (30 de dezembro de 2006): 767–68. http://dx.doi.org/10.3989/scimar.2006.70n4767.
Texto completo da fonteLee, Sujin, e Yumie Rhee. "Bone and Energy Metabolism". Journal of Korean Diabetes 14, n.º 4 (2013): 174. http://dx.doi.org/10.4093/jkd.2013.14.4.174.
Texto completo da fonteNieuwenhuizen, Arie G., e Evert M. van Schothorst. "Energy Metabolism and Diet". Nutrients 13, n.º 6 (1 de junho de 2021): 1907. http://dx.doi.org/10.3390/nu13061907.
Texto completo da fonteTeses / dissertações sobre o assunto "Energy metabolism"
Darcy, Justin. "Energy metabolism and aging". OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1430.
Texto completo da fonteBojanowska, Magdalena. "Wpływ opóźniania terminu pierwszego unasieniania krów z zaburzeniami metabolizmu energetycznego na ich płodność". Rozprawa doktorska, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, 2018. http://dlibra.utp.edu.pl/Content/1229.
Texto completo da fonteThe aim of the research was to assess the effectiveness of the use of data from periodic control of dairy utility in the selection of cows with energy metabolism disturbances and the impact of their delay in the first insemination on the reproductive indicators of the herd
Fredrix, Elisabeth Wilhelmina Hubertina Maria. "Energy metabolism in cancer patients". Maastricht : Maastricht : Datawyse ; University Library, Maastricht University [Host], 1990. http://arno.unimaas.nl/show.cgi?fid=5567.
Texto completo da fonteVasquez-Velasquez, Jose Lionel. "The energy metabolism of children". Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315979.
Texto completo da fonteKotwica, Aleksandra Olga. "Dietary nitrate and the modulation of energy metabolism in metabolic syndrome". Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708924.
Texto completo da fonteSchrauwen, Patrick. "Determinants of energy and substrate metabolism". Maastricht : Maastricht : Shaker ; University Library, Maastricht University [Host], 1998. http://arno.unimaas.nl/show.cgi?fid=8500.
Texto completo da fonteEtten, Ludovicus Maria Leonardus Anna van. "Weight training: implications for energy metabolism". Maastricht : Maastricht : Universiteit Maastricht ; University Library, Maastricht University [Host], 1997. http://arno.unimaas.nl/show.cgi?fid=6819.
Texto completo da fonteLambert, D. "Perioperative energy metabolism in hepatobiliary disease". Thesis, University of Newcastle Upon Tyne, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234422.
Texto completo da fonteSmith, Ruth Deborah. "Potassium intake, growth and energy metabolism". Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295704.
Texto completo da fonteShelton, Laura Marie. "Targeting Energy Metabolism in Brain Cancer". Thesis, Boston College, 2010. http://hdl.handle.net/2345/1183.
Texto completo da fonteIt has long been posited that all cancer cells are dependent on glucose for energy, termed the "Warburg Effect". As a result of an irreversible injury to the mitochondria, cancer cells are less efficient in aerobic respiration. Therefore, calorie restriction was thought to be a natural way to attenuate tumor growth. Calorie restriction lowers blood glucose, while increasing the circulation of ketone bodies. Ketone bodies are metabolized via oxidative phosphorylation in the mitochondria. Only cells that are metabolically capable of aerobic respiration will thus be able to acquire energy from ketone bodies. To date, calorie restriction has been shown to greatly reduce tumor growth and angiogenesis in the murine CT2A, EPEN, and human U87 brain tumor models. Using the novel VM-M3 model for invasive brain cancer and systemic metastatic cancer, I found that though calorie restriction had some efficacy in reducing brain tumor invasion and primary tumor size, metastatic spread was unaffected. Using a bioluminescent-based ATP assay, I determined the viability of metastatic mouse VM-M3 tumor cells grown in vitro in serum free medium in the presence of glucose alone (25 mM), glutamine alone (4 mM), or in glucose + glutamine. The VM-M3 cells could not survive on glucose alone, but could survive in glutamine alone indicating an absolute requirement for glutamine in these metastatic tumor cells. Glutamine could also maintain viability in the absence of glucose and in the presence of the F1 ATPase inhibitor oligomycin. Glutamine could not maintain viability in the presence of the Krebs (TCA) cycle enzyme inhibitor, 3-nitropropionic acid. The data indicate that glutamine can provide ATP for viability in the metastatic VM-M3 cells through Krebs cycle substrate level phosphorylation in the absence of energy from either glycolysis or oxidative phosphorylation. I therefore developed a metabolic therapy that targeted both glucose and glutamine metabolism using calorie restriction and 6-diazo-5-oxo-L-norleucine (DON), a glutamine analog. Primary tumor growth was about 20-fold less in DON treated mice than in untreated control mice. I also found that DON treatment administered alone or in combination with CR inhibited metastasis to liver, lung, and kidney as detected by bioluminescence imaging and histology. Although DON treatment alone did not reduce the incidence of tumor metastasis to spleen compared to the controls, DON administered together with CR significantly reduced the incidence of metastasis to the spleen, indicating a diet/drug synergy. In addition, the phagocytic capabilities of the VM-M3 tumor cells were enhanced during times of energy stress. This allowed for the digestion of engulfed material to be used in energy production. My data provide proof of concept that metabolic therapies targeting both glucose and glutamine metabolism can manage systemic metastatic cancer. Additionally, due to the phagocytic properties of the VM-M3 cell line also seen in a number of human metastatic cancers, I suggest that a unique therapy targeting metabolism and phagocytosis will be required for effective management of metastatic cancer
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Livros sobre o assunto "Energy metabolism"
McCandless, David W., ed. Cerebral Energy Metabolism and Metabolic Encephalopathy. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1209-3.
Texto completo da fonte1941-, McCandless David W., ed. Cerebral energy metabolism and metabolic encephalopathy. New York: Plenum Press, 1985.
Encontre o texto completo da fonteDe Jong, Jan Willem, ed. Myocardial Energy Metabolism. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1319-6.
Texto completo da fonteHirrlinger, Johannes, e Helle S. Waagepetersen, eds. Brain Energy Metabolism. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1059-5.
Texto completo da fonteJong, Jan Willem de, 1942-, ed. Myocardial energy metabolism. Dordrecht: Nijhoff, 1988.
Encontre o texto completo da fonteBoulton, Alan A., Glen B. Baker e Roger Butterworth. Carbohydrates and Energy Metabolism. New Jersey: Humana Press, 1989. http://dx.doi.org/10.1385/0896031438.
Texto completo da fonteDonohoue, Patricia A., ed. Energy Metabolism and Obesity. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-139-4.
Texto completo da fonteA, Little R., e Wernerman J, eds. Energy metabolism in trauma. London: Baillière Tindall, 1997.
Encontre o texto completo da fonteMellett, Peter. Food energy. New York: F. Watts, 1992.
Encontre o texto completo da fonteMellett, Peter. Food energy. New York: F. Watts, 1992.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Energy metabolism"
Hawkins, Richard. "Cerebral Energy Metabolism". In Cerebral Energy Metabolism and Metabolic Encephalopathy, 3–23. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1209-3_1.
Texto completo da fonteGreen, J. Hilary. "Energy metabolism". In The Autonomic Nervous System and Exercise, 72–103. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2919-8_4.
Texto completo da fonteWhittow, G. C. "Energy Metabolism". In Avian Physiology, 253–68. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4862-0_10.
Texto completo da fonteGiudice, Giovanni. "Energy Metabolism". In The Sea Urchin Embryo, 73–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70431-4_3.
Texto completo da fonteEllenbroek, Bart, Alfonso Abizaid, Shimon Amir, Martina de Zwaan, Sarah Parylak, Pietro Cottone, Eric P. Zorrilla et al. "Energy Metabolism". In Encyclopedia of Psychopharmacology, 481. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_1388.
Texto completo da fonteKöhler, Peter, e Louis Tielens. "Energy Metabolism". In Encyclopedia of Parasitology, 902–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-43978-4_1057.
Texto completo da fonteProske, Uwe, David L. Morgan, Tamara Hew-Butler, Kevin G. Keenan, Roger M. Enoka, Sebastian Sixt, Josef Niebauer et al. "Energy Metabolism". In Encyclopedia of Exercise Medicine in Health and Disease, 293–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_66.
Texto completo da fonteWu, Guoyao. "Energy Metabolism". In Principles of Animal Nutrition, 449–78. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120065-8.
Texto completo da fonteMcCandless, David W., e Marc S. Abel. "Hypoglycemia and Cerebral Energy Metabolism". In Cerebral Energy Metabolism and Metabolic Encephalopathy, 27–41. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1209-3_2.
Texto completo da fonteAmaral, Ana I., Paula M. Alves e Ana P. Teixeira. "Metabolic Flux Analysis Tools to Investigate Brain Metabolism In Vitro". In Brain Energy Metabolism, 107–44. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1059-5_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Energy metabolism"
Tsuda, V., S. DeCamp, N. C. Ogassavara, J. Mitchel, S. Koehler, J. P. Butler e J. J. Fredberg. "Energy Metabolism and Unjamming". In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5655.
Texto completo da fonteYuan, Tai-Yi, Hanan N. Fernando, Jessica Czamanski, Chong Wang, Wei Yong Gu e Chun-Yuh Huang. "Effects of Static Compression on Energy Metabolism of Porcine Intervertebral Disc". In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19600.
Texto completo da fonteКарпин, Владимир Александрович, e Наргиз Мираддин кызы Джафарова. "SELF-REGULATION OF THE BIOLOGICAL PROCESSES: COUPLING OF METABOLISM AND ENERGY". In Психология. Спорт. Здравоохранение: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Апрель 2022). Crossref, 2022. http://dx.doi.org/10.37539/psm302.2022.49.17.004.
Texto completo da fonteNoack, Raymond, Chetan Manjesh, Miklos Ruszinko, Hava Siegelmann e Robert Kozma. "Resting state neural networks and energy metabolism". In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965859.
Texto completo da fonteCai, Jian-Guang, e Xin-Kang Zhang. "Energy Metabolism and Nutrition Supplement of Aerobics". In 2015 International Conference on Medicine and Biopharmaceutical. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814719810_0159.
Texto completo da fonteMorozov, G. A., e P. P. Krynitskiy. "Microwave field energy as baker's yeast metabolism regulator". In 2015 International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2015. http://dx.doi.org/10.1109/icatt.2015.7136888.
Texto completo da fonteKounelakis, M. G., M. E. Zervakis, G. C. Giakos, C. Narayan, S. Marotta, D. Natarajamani, G. J. Postma, L. M. C. Buydens e X. Kotsiakis. "Targeting brain gliomas energy metabolism for classification purposes". In 2010 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2010. http://dx.doi.org/10.1109/ist.2010.5548526.
Texto completo da fonteAl-GHamdi, Sami G., e Abdulrahman AL-Tamimi. "Energy Metabolism Analysis in Qatar From Socioeconomic Dimensions". In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2018. http://dx.doi.org/10.5339/qfarc.2018.eepd1117.
Texto completo da fonteDeCamp, S., N. C. Ogassavara e J. J. Fredberg. "Unjamming and Energy Metabolism in the Epithelial Layer". In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7322.
Texto completo da fonteChong, Cher-Rin, Mark Cole, Carolyn Carr, Henry Lee, Brianna Stubbs, Azrul bin Abdul Kadir, Rhys Evans, Pete Cox e Kieran Clarke. "P22 Cardiac energy metabolism increases with ketone oxidation". In British Society for Cardiovascular Research, Autumn Meeting 2017 ‘Cardiac Metabolic Disorders and Mitochondrial Dysfunction’, 11–12 September 2017, University of Oxford. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bscr.27.
Texto completo da fonteRelatórios de organizações sobre o assunto "Energy metabolism"
Corscadden, Louise, e Anjali Singh. Metabolism And Measurable Metabolic Parameters. ConductScience, dezembro de 2022. http://dx.doi.org/10.55157/me20221213.
Texto completo da fonteGlaser, M. Cellular energy metabolism. Office of Scientific and Technical Information (OSTI), junho de 1991. http://dx.doi.org/10.2172/5714213.
Texto completo da fontePopov, V. S., N. V. Vorobeva e G. A. Svazlian. The relationship of energy metabolism and metabolism in pigs. Вестник Курской государственной сельскохозяйственной академии, 2019. http://dx.doi.org/10.18411/issn1997-0749.2019-03-74-79.
Texto completo da fonteAulick, Louis H. Effects of Wound Bacteria on Postburn Energy Metabolism. Fort Belvoir, VA: Defense Technical Information Center, março de 1990. http://dx.doi.org/10.21236/ada242721.
Texto completo da fonteMurugesan, G. Raj, e Michael E. Persia. New Model for Examining the Energy Metabolism of Laying Hens. Ames (Iowa): Iowa State University, janeiro de 2013. http://dx.doi.org/10.31274/ans_air-180814-188.
Texto completo da fonteJacobs, Ira. Energy Metabolism in Cold-Stressed Females: Implications for Predictive Modeling. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1997. http://dx.doi.org/10.21236/ada338905.
Texto completo da fonteHompodoeva, U. Features of energy metabolism in the young Yakut horses in winter. ООО «Информационно-консалтинговый центр», 2019. http://dx.doi.org/10.18411/konevodstvo.2019.6.70rus.
Texto completo da fonteMorfin, C., e G. G. Loots. Characterizing the role of Mef2c in regulating osteoclast differentiation and energy metabolism. Office of Scientific and Technical Information (OSTI), abril de 2018. http://dx.doi.org/10.2172/1459127.
Texto completo da fonteOverbeek, Ross. An Integrative Approach to Energy Carbon and Redox Metabolism In Cyanobacterium Synechocystis. Office of Scientific and Technical Information (OSTI), junho de 2003. http://dx.doi.org/10.2172/824924.
Texto completo da fonteGlaser, M. Cellular energy metabolism. Final technical report, May 1, 1987--April 30, 1991. Office of Scientific and Technical Information (OSTI), junho de 1991. http://dx.doi.org/10.2172/10127387.
Texto completo da fonte