Siga este link para ver outros tipos de publicações sobre o tema: Energy Localization.

Artigos de revistas sobre o tema "Energy Localization"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Energy Localization".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Jurdak, Raja, Peter Corke, Alban Cotillon, Dhinesh Dharman, Chris Crossman e Guillaume Salagnac. "Energy-efficient localization". ACM Transactions on Sensor Networks 9, n.º 2 (março de 2013): 1–33. http://dx.doi.org/10.1145/2422966.2422980.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Costanzo, Alessandra, Davide Dardari, Jurgis Aleksandravicius, Nicolo Decarli, Massimo Del Prete, Davide Fabbri, Marco Fantuzzi et al. "Energy Autonomous UWB Localization". IEEE Journal of Radio Frequency Identification 1, n.º 3 (setembro de 2017): 228–44. http://dx.doi.org/10.1109/jrfid.2018.2792538.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Rosen, Nathan. "Localization of gravitational energy". Foundations of Physics 15, n.º 10 (outubro de 1985): 997–1008. http://dx.doi.org/10.1007/bf00732842.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ketelaar, J. A. A., e J. van Dranen. "The energy of localization". Recueil des Travaux Chimiques des Pays-Bas 69, n.º 4 (2 de setembro de 2010): 477–81. http://dx.doi.org/10.1002/recl.19500690412.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Absalamov, R. A., Т. J. Radjabov, I. R. Tolibjanov e B. T. Ibragimov. "Regularity Of Localization Of Fires At Energy Facilities In Uzbekistan". American Journal of Applied sciences 03, n.º 02 (28 de fevereiro de 2021): 111–18. http://dx.doi.org/10.37547/tajas/volume03issue02-13.

Texto completo da fonte
Resumo:
In the article, the author analyzes emergencies at power plants in Uzbekistan, including research by scientists who conducted their research on extinguishing and localizing fires with the use of appropriate technical means at energy facilities, taking into account the observance of safety measures for energy facilities that have the property of electric shock to firefighters. In addition, the author provides a mathematical analysis of a fire event using the multi-interval method and formulates the appropriate conclusions. At the same time, the author proposes the use of the latest information technologies in extinguishing fires of this kind.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ahmed, M., e S. Moazzam Hossain. "Energy Localization in Curved Spacetime". Progress of Theoretical Physics 93, n.º 5 (1 de maio de 1995): 901–3. http://dx.doi.org/10.1143/ptp/93.5.901.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Medvedev, N. N., M. D. Starostenkov e M. E. Manley. "Energy localization on theAlsublattice ofPt3AlwithL12order". Journal of Applied Physics 114, n.º 21 (7 de dezembro de 2013): 213506. http://dx.doi.org/10.1063/1.4837598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Dauxois, Thierry, e Michel Peyrard. "Energy localization in nonlinear lattices". Physical Review Letters 70, n.º 25 (21 de junho de 1993): 3935–38. http://dx.doi.org/10.1103/physrevlett.70.3935.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Takeno, S., e G. P. Tsironis. "Energy localization and molecular dissociation". Physics Letters A 343, n.º 4 (agosto de 2005): 274–80. http://dx.doi.org/10.1016/j.physleta.2004.11.066.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cheng, Qiang, e Tie Jun Cui. "Energy localization using anisotropic metamaterials". Physics Letters A 367, n.º 4-5 (julho de 2007): 259–62. http://dx.doi.org/10.1016/j.physleta.2007.03.033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Brown, D. W., e L. Bernstein. "Spontaneous Localization of Vibrational Energy". Le Journal de Physique IV 05, n.º C4 (maio de 1995): C4–461—C4–474. http://dx.doi.org/10.1051/jp4:1995437.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Paniagua, Juan Carlos, e Albert Moyano. "Localization-consistent electronic energy partitions". International Journal of Quantum Chemistry 65, n.º 2 (1997): 121–26. http://dx.doi.org/10.1002/(sici)1097-461x(1997)65:2<121::aid-qua3>3.0.co;2-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Liu, Haifeng, Feng Xia, Zhuo Yang e Yang Cao. "An energy-efficient localization strategy for smartphones". Computer Science and Information Systems 8, n.º 4 (2011): 1117–28. http://dx.doi.org/10.2298/csis110430065l.

Texto completo da fonte
Resumo:
In recent years, smartphones have become prevalent. Much attention is being paid to developing and making use of mobile applications that require position information. The Global Positioning System (GPS) is a very popular localization technique used by these applications because of its high accuracy. However, GPS incurs an unacceptable energy consumption, which severely limits the use of smartphones and reduces the battery lifetime. Then an urgent requirement for these applications is a localization strategy that not only provides enough accurate position information to meet users' need but also consumes less energy. In this paper, we present an energy-efficient localization strategy for smartphone applications. On one hand, it can dynamically estimate the next localization time point to avoid unnecessary localization operations. On the other hand, it can also automatically select the energy-optimal localization method. We evaluate the strategy through a series of simulations. Experimental results show that it can significantly reduce the localization energy consumption of smartphones while ensuring a good satisfaction degree.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Chulaevsky, Victor. "From Fixed-Energy Localization Analysis to Dynamical Localization: An Elementary Path". Journal of Statistical Physics 154, n.º 6 (13 de fevereiro de 2014): 1391–429. http://dx.doi.org/10.1007/s10955-014-0937-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Chaves-Silva, F. W., J. P. Puel e M. C. Santos. "Localization of energy and localized controllability". ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 29. http://dx.doi.org/10.1051/cocv/2021005.

Texto completo da fonte
Resumo:
We will consider both the controlled Schrödinger equation and the controlled wave equation on a bounded open set Ω of ℝN during an interval of time (0, T), with T > 0. The control is distributed and acts on a nonempty open subdomain ω of Ω. On the other hand, we consider another open subdomain D of Ω and the localized energy of the solution in D. The first question we want to study is the possibility of obtaining a prescribed value of this local energy at time T by choosing the control adequately. It turns out that this question is equivalent to a problem of exact or approximate controllability in D, which we call localized controllability and which is the second question studied in this article. We obtain sharp results on these two questions and, of course, the answers will require conditions on ω and T which will be given precisely later on.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Berchialla, Luisa, Luigi Galgani e Antonio Giorgilli. "Localization of energy in FPU chains". Discrete & Continuous Dynamical Systems - A 11, n.º 4 (2004): 855–66. http://dx.doi.org/10.3934/dcds.2004.11.855.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Moscatelli, Marco, Claudia Comi e Jean-Jacques Marigo. "Energy Localization through Locally Resonant Materials". Materials 13, n.º 13 (6 de julho de 2020): 3016. http://dx.doi.org/10.3390/ma13133016.

Texto completo da fonte
Resumo:
Among the attractive properties of metamaterials, the capability of focusing and localizing waves has recently attracted research interest to establish novel energy harvester configurations. In the same frame, in this work, we develop and optimize a system for concentrating mechanical energy carried by elastic anti-plane waves. The system, resembling a Fabry-Pérot interferometer, has two barriers composed of Locally Resonant Materials (LRMs) and separated by a homogeneous internal cavity. The attenuation properties of the LRMs allow for the localization of waves propagating at particular frequencies. With proper assumptions on the specific ternary LRMs, the separation of scales (between the considered wave lengths and the characteristic dimension of the employed unit cells) enables the use of a two-scale asymptotic technique for computing the effective behavior of the employed LRMs. This leads to a complete analytic description of the motion of the system. Here we report the results achieved by optimizing the geometry of the system for obtaining a maximum focusing of the incoming mechanical energy. The analytic results are then validated through numerical simulations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Nester, J. M. "Special orthonormal frames and energy localization". Classical and Quantum Gravity 8, n.º 1 (1 de janeiro de 1991): L19—L23. http://dx.doi.org/10.1088/0264-9381/8/1/004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Piazza, Francesco, Stefano Lepri e Roberto Livi. "Cooling nonlinear lattices toward energy localization". Chaos: An Interdisciplinary Journal of Nonlinear Science 13, n.º 2 (junho de 2003): 637–45. http://dx.doi.org/10.1063/1.1535770.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Choi, Taehwa, Yohan Chon e Hojung Cha. "Energy-efficient WiFi scanning for localization". Pervasive and Mobile Computing 37 (junho de 2017): 124–38. http://dx.doi.org/10.1016/j.pmcj.2016.07.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Maluf, José W. "Localization of energy in general relativity". Journal of Mathematical Physics 36, n.º 8 (agosto de 1995): 4242–47. http://dx.doi.org/10.1063/1.530959.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Fern�ndez, Ariel. "RNA self-splicing and energy localization". International Journal of Theoretical Physics 30, n.º 2 (fevereiro de 1991): 129–36. http://dx.doi.org/10.1007/bf00670709.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Balinsky, Alexander A., e Alexey E. Tyukov. "On localization of pseudo-relativistic energy". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, n.º 2067 (10 de janeiro de 2006): 897–912. http://dx.doi.org/10.1098/rspa.2005.1606.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Casher, A., E. G. Floratos e N. C. Tsamis. "String localization and vacuum energy finiteness". Physics Letters B 199, n.º 3 (dezembro de 1987): 377–79. http://dx.doi.org/10.1016/0370-2693(87)90937-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Yang, Yankan, Baoqi Huang, Zhendong Xu e Runze Yang. "A Fuzzy Logic-Based Energy-Adaptive Localization Scheme by Fusing WiFi and PDR". Wireless Communications and Mobile Computing 2023 (7 de janeiro de 2023): 1–17. http://dx.doi.org/10.1155/2023/9052477.

Texto completo da fonte
Resumo:
Fusing WiFi fingerprint localization and pedestrian dead reckoning (PDR) on smartphones is attractive because of their obvious complementarity in localization accuracy and energy consumption. Although fusion localization algorithms tend to improve localization accuracy, extra hardware and software involved will result in extra computations, such that energy consumption is inevitably increased. Thus, in this study, we propose a novel fusion localization scheme based on fuzzy logic, which aims to achieve ideal localization accuracy by consuming as little energy as possible. Specifically, energy-efficient inertial measurement unit (IMU) sensors are routinely called to provide the displacement of a smartphone user in the manner of PDR, whereas a fuzzy inference system is employed to adaptively schedule energy-hungry WiFi scans to fulfill WiFi fingerprint localization according to a coarse metric for fusion localization errors and the remaining energy of the smartphone, so as to achieve a trade-off between localization accuracy and energy consumption. Moreover, in order to mitigate the effect of drift errors induced by PDR, straight trajectories of the user are further identified using a series of WiFi localization results to calibrate heading estimates of PDR. Extensive experimental results demonstrate that the proposed scheme achieves the same accuracy as the complementary filter, but consumes 38.02% energy than the complementary filter, confirming that the proposed scheme can effectively balance the localization accuracy and energy consumption.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Afinanisa, Qonita, Min Kyung Cho e Hyun-A. Seong. "AMPK Localization: A Key to Differential Energy Regulation". International Journal of Molecular Sciences 22, n.º 20 (10 de outubro de 2021): 10921. http://dx.doi.org/10.3390/ijms222010921.

Texto completo da fonte
Resumo:
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Manevitch, Leonid I., Agnessa Kovaleva e Grigori Sigalov. "Nonstationary energy localization vs conventional stationary localization in weakly coupled nonlinear oscillators". Regular and Chaotic Dynamics 21, n.º 2 (março de 2016): 147–59. http://dx.doi.org/10.1134/s1560354716020015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Wu, Xiaoping. "Acoustic Energy-based Sensor Localization With Unknown Transmit Energy Levels". International Journal of Ad Hoc and Ubiquitous Computing 1, n.º 1 (2017): 1. http://dx.doi.org/10.1504/ijahuc.2017.10006702.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Zhou, Ziqin, e Hojjat Adeli. "Wavelet energy spectrum for time-frequency localization of earthquake energy". International Journal of Imaging Systems and Technology 13, n.º 2 (2003): 133–40. http://dx.doi.org/10.1002/ima.10038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Taheri, Mostafa, e Seyed Ahmad Motamedi. "Transceiver Optimization for ToA-Based Localization of Mobile WSN". Journal of Circuits, Systems and Computers 25, n.º 09 (21 de junho de 2016): 1650100. http://dx.doi.org/10.1142/s0218126616501000.

Texto completo da fonte
Resumo:
One of the main parameters in wireless sensor networks (WSNs) is the design of energy-efficient protocols. And accuracy is another central goal of localization. Since sensor nodes run on battery power, any WSN application and accurate localization needs to be energy-efficient. In this paper, the accuracy of localization is increased by accurate measurement of the distance between the mobile sensors. Limit error in multiple-input multiple-output (MIMO) has been calculated by CRB method. Virtual MIMO (VMIMO) technique can obtain better localization precision and the localization is energy-efficient. Optimum selection of the number of the transceiver nodes is obtained by the lowest possible energy consumption, the existent localization error, and speed of nodes. Mathematical relation between energy consumption and localization of mobile nodes is presented and then verified by simulation. VMIMO decreases power of transmitters and this in turn will result in decreasing destructive effects of electromagnetic sensitivity (EMS) on body. Furthermore, optimized localization parameters will increase the efficiency of the system and network lifetime.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Weaver, Richard. "Localization, Scaling, and Diffuse Transport of Wave Energy in Disordered Media". Applied Mechanics Reviews 49, n.º 2 (1 de fevereiro de 1996): 126–35. http://dx.doi.org/10.1115/1.3101886.

Texto completo da fonte
Resumo:
The Anderson localization literature in structural acoustics has to date been concerned largely with applications to the vibrations of one dimensional structures, whether mono-coupled or multi-coupled, and to steady state responses in such systems. This paper presents a brief tutorial on the theory of wave localization in one and higher dimensions with an emphasis on the scaling theory of localization. It then reviews the acoustic and optical literature on wave localization with an emphasis on diffuse time domain responses to transient loads. Numerical and laboratory experiments demonstrating localization in higher dimensions and investigating the time-domain behavior of such systems are discussed. Scaling theory is shown to provide predictions for localization lengths in weakly disordered multi-coupled systems, and for localization lengths in weakly disordered two-dimensional systems as well. Theoretical arguments for rates of diffuse transport are contrasted with the experimental evidence. The paper concludes with a discussion of wave energy confinement in non-localizing disordered systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Guo, Ying, Qinghe Han, Jinxin Wang e Xu Yu. "Energy-aware localization algorithm for Ocean Internet of Things". Sensor Review 38, n.º 2 (19 de março de 2018): 129–36. http://dx.doi.org/10.1108/sr-06-2017-0105.

Texto completo da fonte
Resumo:
Purpose Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due to the difficulty of deploy beacon accurately, the difficulty of transmission distance estimation in harsh ocean environment and the underwater node mobility. This paper aims to provide a novel localization algorithm to solve these problems. Design/methodology/approach This paper takes the ship with accurate position as a beacon, analyzes the relationship between underwater energy attenuation and node distance and takes them into OITs localization algorithm design. Then, it studies the movement regulation of underwater nodes in the action of ocean current, and designs an Energy-aware Localization Algorithm (ELA) for OITs. Findings Proposing an ELA. ELA takes the ship with accurate position information as a beacon to solve the problem of beacon deployment. ELA does not need to calculate the information transmission distance which solves the problem of distance estimation. It takes underwater node movement regulation into computation to solve the problem of node mobility. Originality value This paper provides an ELA based on the relationship between propagation energy attenuation and node distance for OITs. It solves the problem of localization in dynamic underwater networks.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Pinto Neto, N., e P. I. Trajtenberg. "On the localization of the gravitational energy". Brazilian Journal of Physics 30, n.º 1 (março de 2000): 181–88. http://dx.doi.org/10.1590/s0103-97332000000100020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Correia, Sérgio D., Marko Beko, Luis A. Da Silva Cruz e Slavisa Tomic. "Elephant Herding Optimization for Energy-Based Localization". Sensors 18, n.º 9 (29 de agosto de 2018): 2849. http://dx.doi.org/10.3390/s18092849.

Texto completo da fonte
Resumo:
This work addresses the energy-based source localization problem in wireless sensors networks. Instead of circumventing the maximum likelihood (ML) problem by applying convex relaxations and approximations, we approach it directly by the use of metaheuristics. To the best of our knowledge, this is the first time that metaheuristics are applied to this type of problem. More specifically, an elephant herding optimization (EHO) algorithm is applied. Through extensive simulations, the key parameters of the EHO algorithm are optimized such that they match the energy decay model between two sensor nodes. A detailed analysis of the computational complexity is presented, as well as a performance comparison between the proposed algorithm and existing non-metaheuristic ones. Simulation results show that the new approach significantly outperforms existing solutions in noisy environments, encouraging further improvement and testing of metaheuristic methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Abdellatif, Mohamed. "GreenLoc: Energy Efficient Wifi-Based Indoor Localization". Qatar Foundation Annual Research Forum Proceedings, n.º 2011 (novembro de 2011): CSP20. http://dx.doi.org/10.5339/qfarf.2011.csp20.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Xia Yu, Guan, Xin Ye Yu, Li Juan Xia e Bai Bing Xv. "Energy Localization Using Anisotropic Left-Handed Materials". Zeitschrift für Naturforschung A 68a (20 de fevereiro de 2013): 300–304. http://dx.doi.org/10.5560/zna.2012-0119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

van Wijk, Kasper, e Matthew Haney. "Energy propagation and localization in disordered media". Journal of the Acoustical Society of America 121, n.º 5 (maio de 2007): 3100. http://dx.doi.org/10.1121/1.4782007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Abu-Mahfouz, Adnan M., e Gerhard P. Hancke. "ALWadHA Localization Algorithm: Yet More Energy Efficient". IEEE Access 5 (2017): 6661–67. http://dx.doi.org/10.1109/access.2017.2687619.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bilbault, J. M., e P. Marquié. "Energy localization in a nonlinear discrete system". Physical Review E 53, n.º 5 (1 de maio de 1996): 5403–8. http://dx.doi.org/10.1103/physreve.53.5403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Keller, Mark W., A. Mittal, J. W. Sleight, R. G. Wheeler, D. E. Prober, R. N. Sacks e H. Shtrikmann. "Energy-averaged weak localization in chaotic microcavities". Physical Review B 53, n.º 4 (15 de janeiro de 1996): R1693—R1696. http://dx.doi.org/10.1103/physrevb.53.r1693.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Aygün, S., M. Aygün e I. Tarhan. "Energy-momentum localization in Marder space-time". Pramana 68, n.º 1 (janeiro de 2007): 21–30. http://dx.doi.org/10.1007/s12043-007-0002-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Zhang, Wei, e X. G. Zhao. "Dynamical localization and nondispersion of energy spectrum". Physica E: Low-dimensional Systems and Nanostructures 9, n.º 4 (abril de 2001): 667–73. http://dx.doi.org/10.1016/s1386-9477(00)00283-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Hayward, Sean A. "Quasi-localization of Bondi-Sachs energy loss". Classical and Quantum Gravity 11, n.º 12 (1 de dezembro de 1994): 3037–48. http://dx.doi.org/10.1088/0264-9381/11/12/017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Lubin, Dror, e Isaac Goldhirsch. "Scaling of energy localization in mesoscopic rings". Physical Review B 46, n.º 4 (15 de julho de 1992): 2617–20. http://dx.doi.org/10.1103/physrevb.46.2617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Coffey, C. S. "Energy localization in rapidly deforming crystalline solids". Physical Review B 32, n.º 8 (15 de outubro de 1985): 5335–41. http://dx.doi.org/10.1103/physrevb.32.5335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Stockman, M. I., S. V. Faleev e D. J. Bergman. "Coherently controlled femtosecond energy localization on nanoscale". Applied Physics B 74, S1 (junho de 2002): s63—s67. http://dx.doi.org/10.1007/s00340-002-0868-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Swenberg, C. E., L. S. Myers e J. H. Miller. "Energy and charge localization in irradiated DNA". Advances in Space Research 14, n.º 10 (outubro de 1994): 181–201. http://dx.doi.org/10.1016/0273-1177(94)90467-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Woo, Elizabeth S., Dana Dellapiazza, Angela S. Wang e John S. Lazo. "Energy-dependent nuclear binding dictates metallothionein localization". Journal of Cellular Physiology 182, n.º 1 (janeiro de 2000): 69–76. http://dx.doi.org/10.1002/(sici)1097-4652(200001)182:1<69::aid-jcp8>3.0.co;2-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Feddersen, H. "Localization of vibrational energy in globular protein". Physics Letters A 154, n.º 7-8 (abril de 1991): 391–95. http://dx.doi.org/10.1016/0375-9601(91)90039-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Taheri, Mostafa, e Seyed Ahmad Motamedi. "Energy-efficient cooperative localization in mobile WSN". IEEJ Transactions on Electrical and Electronic Engineering 12, n.º 1 (22 de novembro de 2016): 71–79. http://dx.doi.org/10.1002/tee.22346.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia