Siga este link para ver outros tipos de publicações sobre o tema: Energy distributions of desorbates.

Artigos de revistas sobre o tema "Energy distributions of desorbates"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Energy distributions of desorbates".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Georgiou, S., A. Koubenakis, P. Kontoleta e M. Syrrou. "A Comparative Study of the UV Laser Ablation of Van Der Waals Films of Benzene Derivatives". Laser Chemistry 17, n.º 2 (1 de janeiro de 1997): 73–95. http://dx.doi.org/10.1155/1997/45930.

Texto completo da fonte
Resumo:
Ablation of thick (≈ 15 μm) films of C6H6, C6H5CH3 and C6H5CI at 248 nm and 193 nm is studied by means of time-of-flight quadrupole mass spectrometry. The dependence of the desorbate most probable translational energies on laser fluence is determined over the ≈20–200 mJ/cm2 range. In all cases, the corresponding diagrams are found to exhibit “plateaus”, in accord with the report by Braun and Hess [J. Chem. Phys. 99 (1993) 8330]. However, no specific correlation with the thermodynamic properties of the compounds is observed, thereby questioning the attribution of the “plateaus” to phase transformation of the films under ablation conditions. A high sensitivity of the distributions and intensities on the rate of deposition and the irradiation history of the films is observed, indicating the importance of the matrix “structure” for the distribution of the absorbed energy. On the other hand, the analysis of the total translational energies of the desorbates suggests that during ablation, efficient energy transfer occurs in the film. This possibility is further demonstrated by the observation of high translational energies and sputtering yields for C6H12(nonabsorbing at 248 nm) condensed in thickness of ≈ I μm on top of C6H5CH3 films. These observations can be qualitatively explained in terms of the collisional sequence model. Alternatively, a photothermal model may be applicable under the provision that energy distribution in the films is limited due to imperfections introducing barriers (bottlenecks) to its ‘flow’.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

KOŁASIŃSKI, KURT W. "DYNAMICS OF HYDROGEN INTERACTIONS WITH Si(100) AND Si(111) SURFACES". International Journal of Modern Physics B 09, n.º 21 (30 de setembro de 1995): 2753–809. http://dx.doi.org/10.1142/s0217979295001038.

Texto completo da fonte
Resumo:
Experimental and theoretical work probing the dynamics of dissociative adsorption and recombinative desorption of hydrogen at Si(100) and Si (111) surfaces is reviewed. Whereas molecular beam experiments demonstrate that molecular excitations do aid in overcoming a substantial activation barrier toward adsorption, desorbed molecules are found to have a total energy content only slightly above the equilibrium expectation at the surface temperature. A consistent interpretation of the ad/desorption dynamics is arrived at which requires neither a violation of microscopic reversibility nor defect-mediated processes. An essential element of this model is that surface atom relaxations play an essential role in the dynamics such that different portions of the potential energy hypersurface govern the results of adsorption and desorption experiments. The ‘lost’ energy, i.e. that portion of the activation energy not evident in the total energy of the desorbed molecules, is deposited in the surface coordinates where it is inaccessible to experiments that probe the desorbates final state.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Impey, C. D., e G. Neugebauer. "Energy distributions of blazars". Astronomical Journal 95 (fevereiro de 1988): 307. http://dx.doi.org/10.1086/114638.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Stankovic, Ljubisa, Ervin Sejdic e Milos Dakovic. "Vertex-Frequency Energy Distributions". IEEE Signal Processing Letters 25, n.º 3 (março de 2018): 358–62. http://dx.doi.org/10.1109/lsp.2017.2764884.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kurucz, Robert L. "Theoretical Stellar Energy Distributions". Highlights of Astronomy 7 (1986): 827–31. http://dx.doi.org/10.1017/s1539299600007358.

Texto completo da fonte
Resumo:
SummaryWe are working hard to improve model atmospheres because existing models have numerical errors, an unphysical treatment of convection, an inadequate or non-existant treatment of statistical equilibrium, an arbitrarily chosen microturbulent velocity, an arbitrarily chosen helium abundance, and a greatly underestimated line opacity for iron group elements.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

González-Dávila, J. C. "Energy of generalized distributions". Differential Geometry and its Applications 49 (dezembro de 2016): 510–28. http://dx.doi.org/10.1016/j.difgeo.2016.09.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Poland, Douglas. "Energy distributions of gallium nanoclusters". Journal of Chemical Physics 123, n.º 2 (8 de julho de 2005): 024707. http://dx.doi.org/10.1063/1.1992479.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Berta, S., D. Lutz, P. Santini, S. Wuyts, D. Rosario, D. Brisbin, A. Cooray et al. "Panchromatic spectral energy distributions ofHerschelsources". Astronomy & Astrophysics 551 (março de 2013): A100. http://dx.doi.org/10.1051/0004-6361/201220859.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Impey, Chris, e Loretta Gregorini. "Energy distributions of radio galaxies". Astronomical Journal 105 (março de 1993): 853. http://dx.doi.org/10.1086/116477.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Elvis, Martin, Belinda J. Wilkes, Jonathan C. McDowell, Richard F. Green, Jill Bechtold, S. P. Willner, M. S. Oey, Elisha Polomski e Roc Cutri. "Atlas of quasar energy distributions". Astrophysical Journal Supplement Series 95 (novembro de 1994): 1. http://dx.doi.org/10.1086/192093.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

U, Vivian, e D. B. Sanders. "Spectral Energy Distributions of LIRGs". Proceedings of the International Astronomical Union 5, S267 (agosto de 2009): 143. http://dx.doi.org/10.1017/s1743921310006046.

Texto completo da fonte
Resumo:
AbstractWe present preliminary results from a study of the SEDs of a complete sample of 65 LIRGs from GOALS. The spectral shapes at λ > 10μm are similar, while the largest variations occur in the NIR (L1μm5μm/L⊙ ~ 1.0–0.01) and UV (L1μm0.12μm/L⊙ ~ 2.0–0.005). Using stellar population synthesis models to fit the UV–NIR continuum data, we derive stellar masses for the host galaxies of log (M*/M⊙) ~ 10.2–11.4 with a mean of ~ 10.8.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Eckstein, W. "Energy distributions of sputtered particles". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 18, n.º 1-6 (janeiro de 1986): 344–48. http://dx.doi.org/10.1016/s0168-583x(86)80056-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bryan, Greg L., e Sun Kwok. "Energy distributions of symbiotic novae". Astrophysical Journal 368 (fevereiro de 1991): 252. http://dx.doi.org/10.1086/169688.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Jenkovszky, L. L., e B. V. Struminsky. "Very high energy multiplicity distributions". Physics of Atomic Nuclei 67, n.º 1 (janeiro de 2004): 47–49. http://dx.doi.org/10.1134/1.1644006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Poland, Douglas. "Free energy distributions in proteins". Proteins: Structure, Function, and Genetics 45, n.º 4 (2001): 325–36. http://dx.doi.org/10.1002/prot.1153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Eisner, J. A. "SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS". Astrophysical Journal 803, n.º 1 (6 de abril de 2015): L4. http://dx.doi.org/10.1088/2041-8205/803/1/l4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Takagi, Toshinobu, Vladas Vansevičius e Nobuo Arimoto. "Spectral Energy Distributions of Dusty Galaxies". Publications of the Astronomical Society of Japan 55, n.º 2 (25 de abril de 2003): 385–407. http://dx.doi.org/10.1093/pasj/55.2.385.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Romanus, E., T. Koettig, G. Glöckl, S. Prass, F. Schmidl, J. Heinrich, M. Gopinadhan et al. "Energy barrier distributions of maghemite nanoparticles". Nanotechnology 18, n.º 11 (14 de fevereiro de 2007): 115709. http://dx.doi.org/10.1088/0957-4484/18/11/115709.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Poland, Douglas. "Maximum-entropy calculation of energy distributions". Journal of Chemical Physics 112, n.º 15 (15 de abril de 2000): 6554–62. http://dx.doi.org/10.1063/1.481226.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

d'Errico, F., D. T. Bartlett, P. Ambrosi e P. Burgess. "Determination of direction and energy distributions". Radiation Protection Dosimetry 107, n.º 1-3 (1 de novembro de 2003): 133–53. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006383.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Singh, Narendra, e Thomas Schwartzentruber. "Nonequilibrium internal energy distributions during dissociation". Proceedings of the National Academy of Sciences 115, n.º 1 (18 de dezembro de 2017): 47–52. http://dx.doi.org/10.1073/pnas.1713840115.

Texto completo da fonte
Resumo:
In this work, we propose a model for nonequilibrium vibrational and rotational energy distributions in nitrogen using surprisal analysis. The model is constructed by using data from direct molecular simulations (DMSs) of rapidly heated nitrogen gas using an ab initio potential energy surface (PES). The surprisal-based model is able to capture the overpopulation of high internal energy levels during the excitation phase and also the depletion of high internal energy levels during the quasi-steady-state (QSS) dissociation phase. Due to strong coupling between internal energy and dissociation chemistry, such non-Boltzmann effects can influence the overall dissociation rate in the gas. Conditions representative of the flow behind strong shockwaves, relevant to hypersonic flight, are analyzed. The surprisal-based model captures important molecular-level nonequilibrium physics, yet the simple functional form leads to a continuum-level expression that now accounts for the underlying energy distributions and their coupling to dissociation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Hedstrom, Gerald W. "Interpolation of nuclear reaction energy distributions". Journal of Nuclear Science and Technology 54, n.º 10 (13 de julho de 2017): 1095–117. http://dx.doi.org/10.1080/00223131.2017.1345335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Mcdowell, J. "The QED (Quasar Energy Distributions) Atlas". Symposium - International Astronomical Union 159 (1994): 516. http://dx.doi.org/10.1017/s0074180900176879.

Texto completo da fonte
Resumo:
While the energy distributions of optically and radio selected quasars have the same, reproducible, mean shape in the infrared to ultraviolet region, the strength of the infrared and ultraviolet components can vary by over a decade from object to object.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Doyle, J. M., J. C. Sandberg, N. Masuhara, I. A. Yu, D. Kleppner e T. J. Greytak. "Energy distributions of trapped atomic hydrogen". Journal of the Optical Society of America B 6, n.º 11 (1 de novembro de 1989): 2244. http://dx.doi.org/10.1364/josab.6.002244.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Teays, T. J., e E. G. Schmidt. "Cepheid Temperatures Derived from Energy Distributions". International Astronomical Union Colloquium 82 (1985): 30–31. http://dx.doi.org/10.1017/s0252921100108991.

Texto completo da fonte
Resumo:
A number of previous studies of the relation between observed colors and temperatures of Cephelds have been done (Kraft 1961; Johnson 1966; Parsons 1971; Bohm-Vitense 1972; Schmidt 1972; Pel 1978). It was the discrepancies between these various temperature scales, especially at the cooler end, that led us to undertake the present recalibration. We felt some improvement on the previous work would result from our access to better scan data, reddening information, and model atmospheres. The results presented here are preliminary, as they represent only a sample of the data we have obtained.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hauschildt, P. H., W. Spies, R. Wehrse e G. Shaviv. "Calculated Energy Distributions for SN II". International Astronomical Union Colloquium 108 (1988): 412–14. http://dx.doi.org/10.1017/s0252921100094197.

Texto completo da fonte
Resumo:
AbstractWe have calculated a large grid of hydrogen-rich supernova photospheres, in which radii, effective temperatures, density profiles, and expansion velocities have been varied. Spherical geometry, radiative equilibrium and LTE level populations are assumed. In the quasi-exact radiative transfer, the dilution of the radiation field, and scattering as well as absorption (by all relevant continuous processes and up to 150 000 lines in some models) are accurately considered. Good agreement can be obtained with the UV and IR spectra of supernovae 1979C, 1980K, and 1987A as observed during the coasting phase. Potential methods of parameter determinations for SN II are briefly discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Neugebauer, G., D. B. Sanders, B. T. Soifer, S. Phinney e R. F. Green. "Spectral Energy Distributions of PG Quasars". Symposium - International Astronomical Union 134 (1989): 390–92. http://dx.doi.org/10.1017/s0074180900141427.

Texto completo da fonte
Resumo:
Between 1013 - 1017 Hz the continua of all PG quasars can be described in the most general terms by a model consisting of two broad peaks of thermal radiation. There is no evidence for energetically significant nonthermal radiation in this frequency range in the continua of the PG quasars. We have compiled continuum observations for PG quasars from 6 cm to 2 KeV, including IRAS data for all these objects and new ground-based infrared data at 10 μm for many of these quasars. Sixty-three of the PG quasars were detected by IRAS in at least one band. The overall energy distributions for these sixty-three PG quasars are shown in Figure 1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Aygün, Melis, e İhsan Yilmaz. "Energy-Momentum Distributions of Hawking Wormholes". International Journal of Theoretical Physics 47, n.º 3 (15 de agosto de 2007): 707–21. http://dx.doi.org/10.1007/s10773-007-9495-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Corriveau, F., T. Åkesson, S. Almehed, A. L. S. Angelis, N. Armenise, H. Atherton, P. Aubry et al. "Transverse energy distributions in16O-nucleus collisions". Zeitschrift für Physik C Particles and Fields 38, n.º 1-2 (março de 1988): 15–18. http://dx.doi.org/10.1007/bf01574510.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Cioslowski, Jerzy, e Joanna Albin. "Electrostatic energy of polygonal charge distributions". Journal of Mathematical Chemistry 50, n.º 6 (22 de janeiro de 2012): 1378–85. http://dx.doi.org/10.1007/s10910-012-9975-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Rubio, F., J. Rubio e J. L. Oteo. "Surface energy distributions on silicoborate glasses". Colloids and Surfaces A: Physicochemical and Engineering Aspects 139, n.º 2 (agosto de 1998): 227–39. http://dx.doi.org/10.1016/s0927-7757(98)00319-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Alonso-Herrero, Almudena, Alice C. Quillen, George H. Rieke, Valentin D. Ivanov e Andreas Efstathiou. "Spectral Energy Distributions of Seyfert Nuclei". Astronomical Journal 126, n.º 1 (julho de 2003): 81–100. http://dx.doi.org/10.1086/375545.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lin, Chao, e Jun-Hui Fan. "Spectral energy distributions for TeV blazars". Research in Astronomy and Astrophysics 18, n.º 10 (outubro de 2018): 120. http://dx.doi.org/10.1088/1674-4527/18/10/120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Giovannini, A., S. Lupia e R. Ugoccioni. "Multiplicity distributions in high energy collisions". Nuclear Physics B - Proceedings Supplements 25 (março de 1992): 115–23. http://dx.doi.org/10.1016/s0920-5632(05)80067-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Gl�ck, M., E. Reya e A. Vogt. "Parton distributions for high energy collisions". Zeitschrift f�r Physik C Particles and Fields 53, n.º 1 (março de 1992): 127–34. http://dx.doi.org/10.1007/bf01483880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Jensen, T. S. "Kinetic energy distributions in pionic hydrogen". European Physical Journal D 31, n.º 1 (outubro de 2004): 11–19. http://dx.doi.org/10.1140/epjd/e2004-00125-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Plümer, M., e R. M. Weiner. "Multiparticle correlations from transverse-energy distributions". Physical Review D 37, n.º 11 (1 de junho de 1988): 3136–39. http://dx.doi.org/10.1103/physrevd.37.3136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Giovannini, A., S. Lupia e R. Ugoccioni. "Multiplicity distributions in high energy collisions". Nuclear Physics B - Proceedings Supplements 25 (março de 1992): 115–23. http://dx.doi.org/10.1016/0920-5632(92)90385-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Craig, J. H. "ESD energy distributions for COandO2onRh(111)". Applied Surface Science 28, n.º 3 (maio de 1987): 323–29. http://dx.doi.org/10.1016/0169-4332(87)90133-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Li, H. Z., e L. E. Chen. "Spectral Energy Distributions of SDSS Blazars". Journal of Astrophysics and Astronomy 35, n.º 3 (setembro de 2014): 387–89. http://dx.doi.org/10.1007/s12036-014-9237-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Washabaugh, P. D., e D. J. Scheeres. "Energy and Stress Distributions in Ellipsoids". Icarus 159, n.º 2 (outubro de 2002): 314–21. http://dx.doi.org/10.1006/icar.2002.6926.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

LU, CHIA-CHUN, e GUEY-LIN LIN. "ENERGY SPECTRUM AND SOURCE DISTRIBUTIONS OF ULTRAHIGH ENERGY COSMIC RAYS". International Journal of Modern Physics: Conference Series 01 (janeiro de 2011): 163–70. http://dx.doi.org/10.1142/s2010194511000225.

Texto completo da fonte
Resumo:
Motivated by Pierre Auger results on the energy spectrum and the anisotropy of ultrahigh energy cosmic rays (UHECR), we study the spatial distributions of UHECR sources by fitting to the measured UHECR spectrum. We consider possible energy calibration effects in the Pierre Auger data for our analysis. We propose a local overdensity of UHECR sources which is testable in the future cosmic ray astronomy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Mayer, M., K. Arstila e U. von Toussaint. "Skewness of energy-loss straggling and multiple-scattering energy distributions". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, n.º 11-12 (junho de 2010): 1744–48. http://dx.doi.org/10.1016/j.nimb.2010.02.057.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Fan, J. H., J. H. Yang, Y. Liu, G. Y. Luo, C. Lin, Y. H. Yuan, H. B. Xiao, A. Y. Zhou, T. X. Hua e Z. Y. Pei. "THE SPECTRAL ENERGY DISTRIBUTIONS OF FERMI BLAZARS". Astrophysical Journal Supplement Series 226, n.º 2 (13 de outubro de 2016): 20. http://dx.doi.org/10.3847/0067-0049/226/2/20.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Root, Terry. "Energy Constraints on Avian Distributions and Abundances". Ecology 69, n.º 2 (abril de 1988): 330–39. http://dx.doi.org/10.2307/1940431.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Yang, J. H., J. H. Fan, Y. Liu, M. X. Tuo, Z. Y. Pei, W. X. Yang, Y. H. Yuan et al. "The Spectral Energy Distributions for 4FGL Blazars". Astrophysical Journal Supplement Series 262, n.º 1 (24 de agosto de 2022): 18. http://dx.doi.org/10.3847/1538-4365/ac7deb.

Texto completo da fonte
Resumo:
Abstract In this paper, the multiwavelength data from radio to X-ray bands for 2709 blazars in the 4FGL-DR3 catalog are compiled to calculate their spectral energy distributions using a parabolic equation log ( ν f ν ) = P 1 log ν − P 2 2 + P 3 . Some important parameters including spectral curvature (P 1), synchrotron peak frequency (P 2, log ν p ), and peak luminosity ( log L p ) are obtained. Based on those parameters, we discussed the classification of blazars using the “Bayesian classification” and investigated some mutual correlations. We came to the following results. (1) Based on the Bayesian classification of synchrotron peak frequencies, the 2709 blazars can be classified into three subclasses, i.e., log ( ν p / Hz ) < 13.7 for low synchrotron peak blazars (LSPs), 13.7 < log ( ν p / Hz ) < 14.9 for intermediate synchrotron peak blazars (ISPs), and log ( ν p / Hz ) > 14.9 for high synchrotron peak blazars (HSPs), and there are 820 HSPs, 750 ISPs, and 1139 LSPs. (2) The γ-ray emission has the closest relationship with radio emission, followed by optical emission, while the weakest relationship is that with X-ray emission. The γ-ray luminosity is also correlated with the synchrotron peak luminosity. (3) There are strong positive correlations between the curvature (1/∣P 1∣) and the peak frequency ( log ν p ) for all subclasses (FSRQs, (high, intermediate, and low) BL Lacertae objects). For different subclasses, the correlation slopes are different, which implies that there are different acceleration mechanisms and emission processes for different subclasses of blazars.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Biersack, J. P. "Rapid calculations of high energy range distributions". Radiation Effects and Defects in Solids 110, n.º 1-2 (outubro de 1989): 161–62. http://dx.doi.org/10.1080/10420158908214186.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Mehlig, K., K. Hansen, M. Hedén, A. Lassesson, A. V. Bulgakov e E. E. B. Campbell. "Energy distributions in multiple photon absorption experiments". Journal of Chemical Physics 120, n.º 9 (março de 2004): 4281–88. http://dx.doi.org/10.1063/1.1643896.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Economou, Demetre J. "Tailored ion energy distributions on plasma electrodes". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31, n.º 5 (setembro de 2013): 050823. http://dx.doi.org/10.1116/1.4819315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Filippov, G. F., e Yu A. Lashko. "Energy and angular distributions in 6He photodisintegration". Physics of Atomic Nuclei 65, n.º 1 (janeiro de 2002): 69–74. http://dx.doi.org/10.1134/1.1446556.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia