Literatura científica selecionada sobre o tema "Energy and glucose homeostasis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Energy and glucose homeostasis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Energy and glucose homeostasis"
Lam, Carol K. L., Madhu Chari e Tony K. T. Lam. "CNS Regulation of Glucose Homeostasis". Physiology 24, n.º 3 (junho de 2009): 159–70. http://dx.doi.org/10.1152/physiol.00003.2009.
Texto completo da fontePattaranit, Ratchada, e Hugo Antonius van den Berg. "Mathematical models of energy homeostasis". Journal of The Royal Society Interface 5, n.º 27 (8 de julho de 2008): 1119–35. http://dx.doi.org/10.1098/rsif.2008.0216.
Texto completo da fonteMarty, Nell, Michel Dallaporta e Bernard Thorens. "Brain Glucose Sensing, Counterregulation, and Energy Homeostasis". Physiology 22, n.º 4 (agosto de 2007): 241–51. http://dx.doi.org/10.1152/physiol.00010.2007.
Texto completo da fonteLópez-Gambero, A. J., F. Martínez, K. Salazar, M. Cifuentes e F. Nualart. "Brain Glucose-Sensing Mechanism and Energy Homeostasis". Molecular Neurobiology 56, n.º 2 (24 de maio de 2018): 769–96. http://dx.doi.org/10.1007/s12035-018-1099-4.
Texto completo da fonteSoty, Maud, Amandine Gautier-Stein, Fabienne Rajas e Gilles Mithieux. "Gut-Brain Glucose Signaling in Energy Homeostasis". Cell Metabolism 25, n.º 6 (junho de 2017): 1231–42. http://dx.doi.org/10.1016/j.cmet.2017.04.032.
Texto completo da fonteWang, Yan, Markey C. McNutt, Serena Banfi, Michael G. Levin, William L. Holland, Viktoria Gusarova, Jesper Gromada, Jonathan C. Cohen e Helen H. Hobbs. "Hepatic ANGPTL3 regulates adipose tissue energy homeostasis". Proceedings of the National Academy of Sciences 112, n.º 37 (24 de agosto de 2015): 11630–35. http://dx.doi.org/10.1073/pnas.1515374112.
Texto completo da fonteSeo, J., E. S. Fortuno, J. M. Suh, D. Stenesen, W. Tang, E. J. Parks, C. M. Adams, T. Townes e J. M. Graff. "Atf4 Regulates Obesity, Glucose Homeostasis, and Energy Expenditure". Diabetes 58, n.º 11 (18 de agosto de 2009): 2565–73. http://dx.doi.org/10.2337/db09-0335.
Texto completo da fonteGiridharan, NV. "Glucose & energy homeostasis: Lessons from animal studies". Indian Journal of Medical Research 148, n.º 5 (2018): 659. http://dx.doi.org/10.4103/ijmr.ijmr_1737_18.
Texto completo da fontePepino, Marta Y., e Christina Bourne. "Non-nutritive sweeteners, energy balance, and glucose homeostasis". Current Opinion in Clinical Nutrition and Metabolic Care 14, n.º 4 (julho de 2011): 391–95. http://dx.doi.org/10.1097/mco.0b013e3283468e7e.
Texto completo da fontevan Praag, H., M. Fleshner, M. W. Schwartz e M. P. Mattson. "Exercise, Energy Intake, Glucose Homeostasis, and the Brain". Journal of Neuroscience 34, n.º 46 (12 de novembro de 2014): 15139–49. http://dx.doi.org/10.1523/jneurosci.2814-14.2014.
Texto completo da fonteTeses / dissertações sobre o assunto "Energy and glucose homeostasis"
Forsyth, Robert J. "The contribution of astrocyte glycogen to brain energy homeostasis". Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361387.
Texto completo da fonteBurke, Luke Kennedy. "Neurocircuitry underlying serotonin's effects on energy and glucose homeostasis". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708592.
Texto completo da fonteMatthäus, Dörte. "The role of CADM1 in energy and glucose homeostasis". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16905.
Texto completo da fonteMore than 300 million people world-wide are affected by diabetes, the majority suffering from type 2 diabetes. Type 2 diabetes is characterized by insulin resistance, usually caused by obesity and overweight. Enhanced pancreatic insulin secretion largely compensates insulin resistance for years. A failure of pancreatic beta-cells to meet increased insulin demands drastically increases blood glucose levels and marks the onset of type 2 diabetes. Besides environmental influences, mainly elevated food intake and reduced physical activity, also genetic mutations are important factors in the pathophysiology of type 2 diabetes. Recent literature highlights the role of microRNA 375 (miR-375) in the growth and function of pancreatic insulin-producing beta-cells. MiR-375 gene expression is regulated in diabetic humans and rodents, suggesting that this microRNA is involved in the pathogenesis of type 2 diabetes. Genes regulated by miR-375 have been described in pancreatic beta-cells. Nevertheless, the exact mechanisms how miR-375 regulates beta-cell growth and insulin secretion have not been understood. Cell adhesion molecule 1 (CADM1) is a known target of miR-375 and has mainly been described as regulator of synapse number and synaptic function in the brain. CADM1 is also expressed in pancreatic beta-cells and might regulate beta-cell growth and function and might be involved in the control of glucose and energy homeostasis. The aim of this work was to investigate whether CADM1 in pancreatic beta-cells or neuronal tissue contributes to the regulation of energy and glucose homeostasis by using total and conditional Cadm1 deficient mice. Total Cadm1 deficient (Cadm1KO) mice showed increased sensitivity to glucose and insulin as well as enhanced glucose-stimulated insulin secretion compared to littermate control mice. Elevated glucose-stimulated insulin secretion after Cadm1 depletion could be confirmed in an in vitro beta-cell model.
Wang, Xun. "IRF3 is a Critical Regulator of Adipose Glucose and Energy Homeostasis". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10537.
Texto completo da fonteHall, Jessica Ann. "Thyroid Hormone and Insulin Metabolic Actions on Energy and Glucose Homeostasis". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11663.
Texto completo da fonteRahman, S. A. "Investigating the role of gut hormones in energy and glucose homeostasis". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1417078/.
Texto completo da fonteStump, Madeliene. "The role of brain PPAR[gamma] in regulation of energy balance and glucose homeostasis". Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/6000.
Texto completo da fonteAatsinki, S. M. (Sanna-Mari). "Regulation of hepatic glucose homeostasis and Cytochrome P450 enzymes by energy-sensing coactivator PGC-1α". Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208053.
Texto completo da fonteTiivistelmä Peroksisomiproliferaattori-aktivoituvan reseptori γ:n koaktivaattori 1α (PGC-1α) on merkittävä glukoosiaineenvaihdunnan ja mitokondrioiden toiminnan säätelijä korkeaenergisissä soluissa ja kudoksissa. PGC-1α:a säädellään monin tavoin: sekä transkriptionaalisella säätelyllä että transkription jälkeisellä muokkauksella on merkittävä rooli. Monet ulkoiset tekijät säätelevät PGC-1α:n aktiivisuutta, joka puolestaan säätelee solunsisäisiä signaalireittejä vastaamaan tähän signaaliin. Esimerkiksi paasto ja diabetes mellitus (DM) ovat fysiologisia tiloja, jotka lisäävät voimakkaasti PGC-1α:n ilmentymistä maksassa, jolloin glukoosin uudistuotanto eli glukoneogeneesi kiihtyy. Tässä väitöskirjassa tutkittiin PGC-1α:n säätelyä sekä PGC-1α -säädeltyjä signaalireittejä maksassa. Osoitimme, että tyypin 2 diabeteslääke metformiini indusoi PGC-1α:n ilmentymistä maksassa, vastoin aikaisempia käsityksiä. PGC-1α indusoitui AMPK:n ja SIRT1:n välityksellä, säädelleen edelleen mitokondriaalisten geenien aktiivisuutta. Samalla glukoneogeneesi kuitenkin repressoitui muilla mekanismeilla. Lisäksi osoitimme, että PGC-1α indusoi tulehdusreaktiota vaimentavaa interleukiini 1 reseptorin antagonistia (IL1Rn). PGC-1α esti interleukiini 1β:n aiheuttamaa tulehdusvastetta hepatosyyteissä. Lisäksi väitöskirjassa tunnistettiin uusia, PGC-1α -säädeltyjä lääkeaineita ja elimistön sisäisiä yhdisteitä metaboloivia sytokromi P450 -entsyymejä (CYP). Hiiren CYP2A5:n ilmentymisen osoitettiin olevan PGC-1α- ja HNF4α-välitteistä. Lisäksi osoitettiin, että D-vitamiinia metaboloivat CYP2R1 ja CYP24A1 ovat uusia PGC-1α -säädeltyjä geenejä. Tämä löydös viittaa siihen, että PGC-1α:lla on rooli aktiivisen D-vitamiinin säätelyssä. Tämän väitöskirjan löydökset lisäävät tietoa glukoosiaineenvaihdunnan häiriöiden kuten tyypin 2 diabeteksen molekulaarisista mekanismeista, joita voidaan hyödyntää mahdollisten uusien lääkeaineiden kehittämisessä. Lisäksi väitöskirjassa osoitettiin, että D-vitamiinimetabolia on kytköksissä energia-aineenvaihduntaan ja että PGC-1α:lla on tässä rooli, jota ei aiemmin ole tunnettu
Eftychidis, Vasileios. "Elucidating the principal role of cholecystokinin neurons of the ventromedial hypothalamic nucleus in energy homeostasis". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:906a0aa6-847a-43b8-a527-458252aca825.
Texto completo da fonteBirkenfeld, Andreas L. [Verfasser]. "The role of natriuretic peptides in the regulation of energy metabolism, lipid- and glucose homeostasis / Andreas L. Birkenfeld". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2013. http://d-nb.info/1035182424/34.
Texto completo da fonteLivros sobre o assunto "Energy and glucose homeostasis"
Mladen, Vranic, Efendić Suad e Hollenberg Charles H. 1930-, eds. Fuel homeostasis and the nervous system. New York: Plenum Press, 1991.
Encontre o texto completo da fonteinstitutet, Karolinska, ed. Food deprivation and glucose homeostasis in hemorrhagic stress. Stockholm: [s.n.], 1987.
Encontre o texto completo da fonte1950-, Pagliassotti Michael J., Davis Stephen N. 1955- e Cherrington Alan 1946-, eds. The role of the liver in maintaining glucose homeostasis. Austin: Landes, 1994.
Encontre o texto completo da fontePolakof, Sergio. Brain glucosensing: Physiological implications. Hauppauge, N.Y: Nova Science Publishers, 2010.
Encontre o texto completo da fonteSarabia, Vivian E. Calcium homeostasis and regulation of glucose uptake in human skeletal muscle cells in culture. Ottawa: National Library of Canada, 1990.
Encontre o texto completo da fonteHodakoski, Cindy Marie. P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis. [New York, N.Y.?]: [publisher not identified], 2012.
Encontre o texto completo da fonteMiller, Janette Brand. The new glucose revolution pocket guide to sugar & energy. New York: Marlowe, 2004.
Encontre o texto completo da fonteGema, Frühbeck, e Nutrition Society (Great Britain), eds. Peptides in energy balance and obesity. Wallingford, Oxfordshire: CABI Pub. in association with the Nutrition Society, 2009.
Encontre o texto completo da fonteMuromt͡sev, V. A. Medit͡sina v XXI veke: Ot drevneĭshikh tradit͡siĭ do vysokikh tekhnologiĭ. Sankt-Peterburg: Izd-vo "Intan", 1998.
Encontre o texto completo da fontePool, Ontario Assessment Instrument, ed. Energy and the living cell: Draft. Toronto: Minister of Education, Ontario, 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Energy and glucose homeostasis"
Kirchner, Henriette, Matthias Tschöp e Jenny Tong. "GOAT and the Regulation of Energy and Glucose Homeostasis". In Ghrelin in Health and Disease, 131–47. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-903-7_7.
Texto completo da fonteKamstra, Kaj, e Alexander Tups. "Neuroendocrine Interactions in the Control of Glucose- and Energy Homeostasis". In Physiological Consequences of Brain Insulin Action, 63–78. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003079927-5.
Texto completo da fonteMounien, Lourdes, e Bernard Thorens. "Central Glucose Sensing and Control of Food Intake and Energy Homeostasis". In Metabolic Syndrome, 29–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910016.ch2.
Texto completo da fonteGuillaume, Maeva, Alexandra Montagner, Coralie Fontaine, Françoise Lenfant, Jean-François Arnal e Pierre Gourdy. "Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis". In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity, 401–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70178-3_19.
Texto completo da fonteAlsahli, Mazen, e John E. Gerich. "Normal Glucose Homeostasis". In Principles of Diabetes Mellitus, 1–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20797-1_2-1.
Texto completo da fonteAlsahli, Mazen, Muhammad Z. Shrayyef e John E. Gerich. "Normal Glucose Homeostasis". In Principles of Diabetes Mellitus, 1–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-20797-1_2-2.
Texto completo da fonteGerich, John E., Steven D. Wittlin e Christian Meyer. "Normal Glucose Homeostasis". In Principles of Diabetes Mellitus, 39–56. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-6260-0_2.
Texto completo da fonteAlsahli, Mazen, Muhammad Z. Shrayyef e John E. Gerich. "Normal Glucose Homeostasis". In Principles of Diabetes Mellitus, 23–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-18741-9_2.
Texto completo da fonteShrayyef, Muhammad Z., e John E. Gerich. "Normal Glucose Homeostasis". In Principles of Diabetes Mellitus, 19–35. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09841-8_2.
Texto completo da fonteFerrannini, Ele, e Marta Seghieri. "Overview of Glucose Homeostasis". In Endocrinology, 1–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45015-5_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Energy and glucose homeostasis"
Ahmed, Sumaya, e Nasser Rizk. "The Expression of Bile Acid Receptor TGR5 in Adipose Tissue in Diet-Induced Obese Mice". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0212.
Texto completo da fonteBelmon, Anchana P., e Jeraldin Auxillia. "An Unprecedented PSO-PID Optimized Glucose Homeostasis". In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE, 2020. http://dx.doi.org/10.1109/icstcee49637.2020.9277306.
Texto completo da fonteKim, Jaeyeon, Gerald M. Saidel, John P. Kirwan e Marco E. Cabrera. "Computational Model of Glucose Homeostasis During Exercise". In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260736.
Texto completo da fonteKim, Jaeyeon, Gerald M. Saidel, John P. Kirwan e Marco E. Cabrera. "Computational Model of Glucose Homeostasis During Exercise". In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397397.
Texto completo da fontePanwar, Madhuri, Amit Acharyya e Rishad A. Shafik. "Non-invasive Blood Glucose Estimation Methodology Using Predictive Glucose Homeostasis Models". In 2018 8th International Symposium on Embedded Computing and System Design (ISED). IEEE, 2018. http://dx.doi.org/10.1109/ised.2018.8703991.
Texto completo da fonteSingh, Neeraj Kumar, e Hao Wang. "Virtual Environment Model of Glucose Homeostasis for Diabetes Patients". In 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). IEEE, 2019. http://dx.doi.org/10.1109/icphys.2019.8780383.
Texto completo da fonteVilla E, Yisel C., e Julian M. Garcia G. "Modeling of the Human Pancreas Function in Glucose Homeostasis". In 2018 Argentine Conference on Automatic Control (AADECA). IEEE, 2018. http://dx.doi.org/10.23919/aadeca.2018.8577449.
Texto completo da fonteShrestha, Man Mohan, Chun-Yan Lim e Weiping Han. "Actin Cytoskeletal Remodeling in the Regulation of Glucose Homeostasis". In International Conference on Photonics and Imaging in Biology and Medicine. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pibm.2017.t1b.2.
Texto completo da fonteNevis, Ruiz M., Colorado G. Vivian e Lema-Perez Laura. "A Coupled Model of Glucose Homeostasis From a Fieldbus View". In 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC). IEEE, 2019. http://dx.doi.org/10.1109/ccac.2019.8920895.
Texto completo da fonteBerggren, Per-Olof. "The islet of Langerhans is a master regulator of glucose homeostasis". In 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM 2010). IEEE, 2010. http://dx.doi.org/10.1109/photwtm.2010.5421943.
Texto completo da fonteRelatórios de organizações sobre o assunto "Energy and glucose homeostasis"
Puigserver, Pere. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2007. http://dx.doi.org/10.21236/ada467976.
Texto completo da fontePuigserver, Pere. Maintenance of Glucose Homeostasis Through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2011. http://dx.doi.org/10.21236/ada551301.
Texto completo da fonteSosa Munguía, Paulina del Carmen, Verónica Ajelet Vargaz Guadarrama, Marcial Sánchez Tecuatl, Mario Garcia Carrasco, Francesco Moccia e Roberto Berra-Romani. Diabetes mellitus alters intracellular calcium homeostasis in vascular endothelial cells: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maio de 2022. http://dx.doi.org/10.37766/inplasy2022.5.0104.
Texto completo da fontefrydman, judith. Mechanism and function of the chaperonin from Methanococcus maripaludis: implications for archaeal protein homeostasis and energy production. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1429063.
Texto completo da fonteChen, Jiankun, Yingming Gu, Lihong Yin, Minyi He, Na Liu, Yue Lu, Changcai Xie, Jiqiang Li e Yu Chen. Network meta-analysis of curative efficacy of different acupuncture methods on obesity combined with insulin resistance. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, agosto de 2022. http://dx.doi.org/10.37766/inplasy2022.8.0075.
Texto completo da fonteCorscadden, Louise, e Anjali Singh. Metabolism And Measurable Metabolic Parameters. ConductScience, dezembro de 2022. http://dx.doi.org/10.55157/me20221213.
Texto completo da fonteCahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien e Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, novembro de 2014. http://dx.doi.org/10.32747/2014.7699855.bard.
Texto completo da fonteGothilf, Yoav, Roger Cone, Berta Levavi-Sivan e Sheenan Harpaz. Genetic manipulations of MC4R for increased growth and feed efficiency in fish. United States Department of Agriculture, janeiro de 2016. http://dx.doi.org/10.32747/2016.7600043.bard.
Texto completo da fonteBoisclair, Yves R., e Arieh Gertler. Development and Use of Leptin Receptor Antagonists to Increase Appetite and Adaptive Metabolism in Ruminants. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7697120.bard.
Texto completo da fonteGranot, David, Scott Holaday e Randy D. Allen. Enhancing Cotton Fiber Elongation and Cellulose Synthesis by Manipulating Fructokinase Activity. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7613878.bard.
Texto completo da fonte