Artigos de revistas sobre o tema "Enacyloxins"

Siga este link para ver outros tipos de publicações sobre o tema: Enacyloxins.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 38 melhores artigos de revistas para estudos sobre o assunto "Enacyloxins".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Furukawa, Hiroyuki, Hiromasa Kiyota, Teiko Yamada, Manabu Yaosaka, Ryo Takeuchi, Toshihiko Watanabe e Shigefumi Kuwahara. "Stereochemistry of Enacyloxins. Part 4". Chemistry & Biodiversity 4, n.º 7 (julho de 2007): 1601–4. http://dx.doi.org/10.1002/cbdv.200790140.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Depoorter, Eliza, Evelien De Canck, Tom Coenye e Peter Vandamme. "Burkholderia Bacteria Produce Multiple Potentially Novel Molecules that Inhibit Carbapenem-Resistant Gram-Negative Bacterial Pathogens". Antibiotics 10, n.º 2 (2 de fevereiro de 2021): 147. http://dx.doi.org/10.3390/antibiotics10020147.

Texto completo da fonte
Resumo:
Antimicrobial resistance in Gram-negative pathogens represents a global threat to human health. This study determines the antimicrobial potential of a taxonomically and geographically diverse collection of 263 Burkholderia (sensu lato) isolates and applies natural product dereplication strategies to identify potentially novel molecules. Antimicrobial activity is almost exclusively present in Burkholderia sensu stricto bacteria and rarely observed in the novel genera Paraburkholderia, Caballeronia, Robbsia, Trinickia, and Mycetohabitans. Fourteen isolates show a unique spectrum of antimicrobial activity and inhibited carbapenem-resistant Gram-negative bacterial pathogens. Dereplication of the molecules present in crude spent agar extracts identifies 42 specialized metabolites, 19 of which represented potentially novel molecules. The known identified Burkholderia metabolites include toxoflavin, reumycin, pyrrolnitrin, enacyloxin, bactobolin, cepacidin, ditropolonyl sulfide, and antibiotics BN-227-F and SF 2420B, as well as the siderophores ornibactin, pyochelin, and cepabactin. Following semipreparative fractionation and activity testing, a total of five potentially novel molecules are detected in active fractions. Given the molecular formula and UV spectrum, two of those putative novel molecules are likely related to bactobolins, and another is likely related to enacyloxins. The results from this study confirm and extend the observation that Burkholderia bacteria present exciting opportunities for the discovery of potentially novel bioactive molecules.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Watanabe, Toshihiko, Hiromasa Kiyota, Ryo Takeuchi, Keijiro Enari e Takayuki Oritani. "STEREOCHEMISTRY OF ENACYLOXINS 2.† STRUCTURE ELUCIDATION OF DECARBAMOYL ENACYLOXIN Ha AND IVa, NEW MEMBERS OF ENACYLOXIN ANTIBIOTICS FROM Frateuria sp. W-315‡". Heterocyclic Communications 7, n.º 4 (janeiro de 2001): 313–16. http://dx.doi.org/10.1515/hc.2001.7.4.313.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Saito, Aki, Wataru Igarashi, Hiroyuki Furukawa, Hiroki Hoshikawa, Teiko Yamada, Shigefumi Kuwahara e Hiromasa Kiyota. "Synthetic Studies of Enacyloxins: A Series of Antibiotics Isolated from Frateuria sp. W-315: C1′-C8′ and C9′-C15′ Fragments". Natural Product Communications 10, n.º 4 (abril de 2015): 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000429.

Texto completo da fonte
Resumo:
Synthetic studies of enacyloxins (ENXs), a series of yellow-colored, polyene-polyol antibiotics produced by Frateuria sp. W-315, are described. The C1′-C8′ polyene fragments were prepared using successive Wittig reactions. The C9′-C15′ and C10′-C15′ fragments were constructed from ( S)-isopropylideneglyceraldehyde using Yamaguchi's nucleophilic substitution reaction of acetylide to epoxide, and/or Marshall's allenylindium mediated reaction as the key steps.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Takeuchi, Ryo, Hiromasa Kiyota, Manabu Yaosaka, Toshihiko Watanabe, Keijiro Enari, Takeyoshi Sugiyama e Takayuki Oritani. "Stereochemistry of enacyloxins. Part 3.1 (12′S,17′R,18′S,19′R)-Absolute configuration of enacyloxins, a series of antibiotics from Frateuria sp. W-315". Journal of the Chemical Society, Perkin Transactions 1, n.º 20 (1 de outubro de 2001): 2676–81. http://dx.doi.org/10.1039/b104341m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mahenthiralingam, Eshwar, Lijiang Song, Andrea Sass, Judith White, Ceri Wilmot, Angela Marchbank, Othman Boaisha, James Paine, David Knight e Gregory L. Challis. "Enacyloxins Are Products of an Unusual Hybrid Modular Polyketide Synthase Encoded by a Cryptic Burkholderia ambifaria Genomic Island". Chemistry & Biology 18, n.º 5 (maio de 2011): 665–77. http://dx.doi.org/10.1016/j.chembiol.2011.01.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

WATANABE, TOSHIHIKO, TAKEYOSHI SUGIYAMA e KAZUO IZAKI. "New polyenic antibiotics active against Gram-positive and Gram-negative bacteria. IX. Reclassification of a strain W-315 producing enacyloxins." Journal of Antibiotics 47, n.º 4 (1994): 496–98. http://dx.doi.org/10.7164/antibiotics.47.496.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

WATANABE, TOSHIHIKO, TAKEYOSHI SUGIYAMA, KOJI CHINO, TOMOKO SUZUKI, SUSUMU WAKABAYASHI, HIROYUKI HAYASHI, RYOKO ITAMI, JUN SHIMA e KAZUO IZAKI. "New polyenic antibiotics active against Gram-positive and Gram-negative bacteria. VIII. Construction of synthetic medium for production of mono-chloro-congeners of enacyloxins." Journal of Antibiotics 45, n.º 4 (1992): 476–84. http://dx.doi.org/10.7164/antibiotics.45.476.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Oyama, Ryo, Toshihiko Watanabe, Hiroko Hanzawa, Taketo Sano, Takeyoshi Sugiyama e Kazuo Izaki. "An Extracellular Quinoprotein Oxidase That Catalyzes Conversion of Enacyloxin IVa to Enacyloxin IIa". Bioscience, Biotechnology, and Biochemistry 58, n.º 10 (janeiro de 1994): 1914–17. http://dx.doi.org/10.1271/bbb.58.1914.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Watanabe, Toshihiko, Ryo Oyama, Hiroko Hanzawa, Takeyoshi Sugiyama e Kazuo Izaki. "Enzymatic Properties of an Extracellular Quinoprotein, Enacyloxin Oxidase". Bioscience, Biotechnology, and Biochemistry 59, n.º 1 (janeiro de 1995): 123–25. http://dx.doi.org/10.1271/bbb.59.123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kosol, Simone, Angelo Gallo, Daniel Griffiths, Timothy R. Valentic, Joleen Masschelein, Matthew Jenner, Emmanuel L. C. de los Santos et al. "Structural basis for chain release from the enacyloxin polyketide synthase". Nature Chemistry 11, n.º 10 (23 de setembro de 2019): 913–23. http://dx.doi.org/10.1038/s41557-019-0335-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

WATANABE, TOSHIHIKO, JUN SHIMA, KAZUO IZAKI e TAKEYOSHI SUGIYAMA. "New polyenic antibiotics active against Gram-positive and Gram-negative bacteria. VII. Isolation and structure of enacyloxin IVa, a possible biosynthetic intermediate of enacyloxin IIa." Journal of Antibiotics 45, n.º 4 (1992): 575–76. http://dx.doi.org/10.7164/antibiotics.45.575.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sugiyama †, Takeyoshi, Hiromasa Kiyota, Toshihiko Watanabe e Takayuki Oritani. "Intramolecular migration of long chain acyl group of Enacyloxin IIa methyl ester". Natural Product Research 19, n.º 6 (setembro de 2005): 581–84. http://dx.doi.org/10.1080/14786410412331271997.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Masschelein, Joleen, Paulina K. Sydor, Christian Hobson, Rhiannon Howe, Cerith Jones, Douglas M. Roberts, Zhong Ling Yap, Julian Parkhill, Eshwar Mahenthiralingam e Gregory L. Challis. "A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis". Nature Chemistry 11, n.º 10 (23 de setembro de 2019): 906–12. http://dx.doi.org/10.1038/s41557-019-0309-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Watanabe, Toshihiko, Takeyoshi Sugiyama, Masahiro Takahashi, Jun Shima, Kyohei Yamashita, Kazuo Izaki, Kazuo Furihata e Haruo Seto. "The Structure of Enacyloxin II, a Novel Linear Polyenic Antibiotic Produced byGluconobactersp. W-315". Agricultural and Biological Chemistry 54, n.º 1 (janeiro de 1990): 259–61. http://dx.doi.org/10.1080/00021369.1990.10869882.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Parmeggiani, Andrea, Ivo M. Krab, Toshihiko Watanabe, Rikke C. Nielsen, Caroline Dahlberg, Jens Nyborg e Poul Nissen. "Enacyloxin IIa Pinpoints a Binding Pocket of Elongation Factor Tu for Development of Novel Antibiotics". Journal of Biological Chemistry 281, n.º 5 (28 de outubro de 2005): 2893–900. http://dx.doi.org/10.1074/jbc.m505951200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Masschelein, J., PK Sydor, D. Griffiths, TR Valentic, A. Gallo, C. Jones, L. Song et al. "Dissection and rational engineering of the biosynthetic pathway to enacyloxin, a promising anti-Gram-negative antibiotic". Planta Medica 81, S 01 (14 de dezembro de 2016): S1—S381. http://dx.doi.org/10.1055/s-0036-1596129.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Cetin, R., I. M. Krab, P. H. Anborgh, R. H. Cool, T. Watanabe, T. Sugiyama, K. Izaki e A. Parmeggiani. "Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome." EMBO Journal 15, n.º 10 (maio de 1996): 2604–11. http://dx.doi.org/10.1002/j.1460-2075.1996.tb00618.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Créchet, Jean-Bernard, Christian Malosse e Codjo Hountondji. "EF-Tu from the enacyloxin producing Frateuria W-315 strain: Structure/activity relationship and antibiotic resistance". Biochimie 127 (agosto de 2016): 59–69. http://dx.doi.org/10.1016/j.biochi.2016.04.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Risser, Fanny, Sabrina Collin, Raphael Dos Santos-Morais, Arnaud Gruez, Benjamin Chagot e Kira J. Weissman. "Towards improved understanding of intersubunit interactions in modular polyketide biosynthesis: Docking in the enacyloxin IIa polyketide synthase". Journal of Structural Biology 212, n.º 1 (outubro de 2020): 107581. http://dx.doi.org/10.1016/j.jsb.2020.107581.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

WATANABE, TOSHIHIKO, TAKEYOSHI SUGIYAMA, MASAHIRO TAKAHASHI, JUN SHIMA, KYOHEI YAMASHITA, KAZUO IZAKI, KAZUO FURIHATA e HARUO SETO. "New polyenic antibiotics active against Gram-positive and Gram-negative bacteria. IV. Structural elucidation of enacyloxin IIa." Journal of Antibiotics 45, n.º 4 (1992): 470–75. http://dx.doi.org/10.7164/antibiotics.45.470.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Hubert, L., C. Berger e E. Mahenthiralingam. "P211 Evolutionary adaptation of Burkholderia multivorans to enacyloxin IIa leads to alterations in antimicrobial resistance and phenotype". Journal of Cystic Fibrosis 23 (junho de 2024): S134. http://dx.doi.org/10.1016/s1569-1993(24)00515-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

WATANABE, TOSHIHIKO, TOMOKO SUZUKI e KAZUO IZAKI. "New polyenic antibiotics active against Gram-positive and Gram-negative bacteria. V. Mode of action of enacyloxin IIa." Journal of Antibiotics 44, n.º 12 (1991): 1457–59. http://dx.doi.org/10.7164/antibiotics.44.1457.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Zuurmond, Anne-Marie, Lian N. Olsthoorn-Tieleman, J. Martien de Graaf, Andrea Parmeggiani e Barend Kraal. "Mutant EF-tu species reveal novel features of the enacyloxin IIa inhibition mechanism on the ribosome 1 1Edited by D. E. Draper". Journal of Molecular Biology 294, n.º 3 (dezembro de 1999): 627–37. http://dx.doi.org/10.1006/jmbi.1999.3296.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

WATANABE, Toshihiko, Takeyoshi SUGIYAMA, Masahiro TAKAHASHI, Jun SHIMA, Kyohei YAMASHITA, Kazuo IZAKI, Kazuo FURIHATA e Haruo SETO. "New polyenic antibiotics active against gram-positive and -negative bacteria. Part III. The structure of enacyloxin II, a novel linear polyenic antibiotic produced by Gluconobacter sp. W-315." Agricultural and Biological Chemistry 54, n.º 1 (1990): 259–61. http://dx.doi.org/10.1271/bbb1961.54.259.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

WATANABE, TOSHIHIKO, NAOKI OKUBO, TOMOKO SUZUKI e KAZUO IZAKI. "New polyenic antibiotics active against Gram-positive and Gram-negative bacteria. VI. Non-lactonic polyene antibiotic, enacyloxin IIa, inhibits binding of aminoacyl-tRNA to A site of ribosomes." Journal of Antibiotics 45, n.º 4 (1992): 572–74. http://dx.doi.org/10.7164/antibiotics.45.572.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Igarashi, Wataru, Hiroaki Hoshikawa, Hiroyuki Furukawa, Teiko Yamada, Shigefumi Kuwahara e Hiromasa Kiyota. "Stereochemistry of enacyloxins. Part 6: Synthesis of C16′-C23′ fragments of enacyloxins, a series of antibiotics from Frateuria sp. W-315". Heterocyclic Communications 17, n.º 1-2 (1 de janeiro de 2011). http://dx.doi.org/10.1515/hc.2011.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Fujimori, Toshitaka, Osamu Nakayama, Hiromasa Kiyota, Yu-ichi Kamijima, Toshihiko Watanabe e Takayuki Oritani. "STEREOCHEMISTRY OF ENACYLOXINS 1. ABSOLUTE CONFIGURATION OF THE CYCLOHEXANE RING PART OF ENACYLOXINS, A SERIES OF ANTIBIOTICS FROM Frateuria sp. W-315†". Heterocyclic Communications 7, n.º 4 (janeiro de 2001). http://dx.doi.org/10.1515/hc.2001.7.4.327.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Furukawa, Hiroyuki, Hiroaki Hoshikawa, Wataru Igarashi, Manabu Yaosaka, Teiko Yamada, Shigefumi Kuwahara e Hiromasa Kiyota. "Stereochemistry of enacyloxins. Part 5: Synthesis of a C9′-C15′ fragment of enacyloxins, a series of antibiotics from Frateuria sp. W-315". Heterocyclic Communications 17, n.º 1-2 (1 de janeiro de 2011). http://dx.doi.org/10.1515/hc.2011.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Furukawa, Hiroyuki, Hiromasa Kiyota, Teiko Yamada, Manabu Yaosaka, Ryo Takeuchi, Toshihiko Watanabe e Shigefumi Kuwahara. "Stereochemistry of Enacyloxins. Part 4. Complete Structural and Configurational Assignment of the Enacyloxin Family, a Series of Antibiotics from Frateuria sp. W-315." ChemInform 38, n.º 52 (25 de dezembro de 2007). http://dx.doi.org/10.1002/chin.200752207.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Christin, Orane, e Emmanuel Roulland. "Advancements in Enacyloxins Total Synthesis: Access to the Chlorinated Polyunsaturated Chain Peculiar to this Promising Family of Antibiotics". Organic Letters, 7 de setembro de 2023. http://dx.doi.org/10.1021/acs.orglett.3c02477.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Mullins, Alex J., Cerith Jones, Matthew J. Bull, Gordon Webster, Julian Parkhill, Thomas R. Connor, James A. H. Murray, Gregory L. Challis e Eshwar Mahenthiralingam. "Genomic Assemblies of Members of Burkholderia and Related Genera as a Resource for Natural Product Discovery". Microbiology Resource Announcements 9, n.º 42 (15 de outubro de 2020). http://dx.doi.org/10.1128/mra.00485-20.

Texto completo da fonte
Resumo:
ABSTRACT The genomes of 450 members of Burkholderiaceae, isolated from clinical and environmental sources, were sequenced and assembled as a resource for genome mining. Genomic analysis of the collection has enabled the identification of multiple metabolites and their biosynthetic gene clusters, including the antibiotics gladiolin, icosalide A, enacyloxin, and cepacin A.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

"Biosynthetic Engineering of Polyketide Synthase Modules Towards New Enacyloxin Antibiotics". Synfacts 16, n.º 02 (21 de janeiro de 2020): 0225. http://dx.doi.org/10.1055/s-0039-1691641.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Christin, Orane, e Emmanuel Roulland. "Optimizing the Synthesis Strategy of the Chlorinated Chain Characteristic to the Enacyloxin Series Using Models". Journal of Organic Chemistry, 6 de maio de 2024. http://dx.doi.org/10.1021/acs.joc.4c00626.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Jones, Cerith, Gordon Webster, Alex J. Mullins, Matthew Jenner, Matthew J. Bull, Yousef Dashti, Theodore Spilker et al. "Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles". Microbial Genomics 7, n.º 1 (1 de janeiro de 2021). http://dx.doi.org/10.1099/mgen.0.000515.

Texto completo da fonte
Resumo:
Burkholderia gladioli is a bacterium with a broad ecology spanning disease in humans, animals and plants, but also encompassing multiple beneficial interactions. It is a plant pathogen, a toxin-producing food-poisoning agent, and causes lung infections in people with cystic fibrosis (CF). Contrasting beneficial traits include antifungal production exploited by insects to protect their eggs, plant protective abilities and antibiotic biosynthesis. We explored the genomic diversity and specialized metabolic potential of 206 B. gladioli strains, phylogenomically defining 5 clades. Historical disease pathovars (pv.) B. gladioli pv. allicola and B. gladioli pv. cocovenenans were distinct, while B. gladioli pv. gladioli and B. gladioli pv. agaricicola were indistinguishable; soft-rot disease and CF infection were conserved across all pathovars. Biosynthetic gene clusters (BGCs) for toxoflavin, caryoynencin and enacyloxin were dispersed across B. gladioli , but bongkrekic acid and gladiolin production were clade-specific. Strikingly, 13 % of CF infection strains characterized were bongkrekic acid-positive, uniquely linking this food-poisoning toxin to this aspect of B. gladioli disease. Mapping the population biology and metabolite production of B. gladioli has shed light on its diverse ecology, and by demonstrating that the antibiotic trimethoprim suppresses bongkrekic acid production, a potential therapeutic strategy to minimize poisoning risk in CF has been identified.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Heath, N. L., R. S. Rowlands, G. Webster, E. Mahenthiralingam e M. L. Beeton. "Antimicrobial activity of enacyloxin IIa and gladiolin against the urogenital pathogens Neisseria gonorrhoeae and Ureaplasma spp". Journal of Applied Microbiology, 21 de outubro de 2020. http://dx.doi.org/10.1111/jam.14858.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Baines, Cameron, Jacob Sargeant, Christopher D. Fage, Hannah Pugh, Lona M. Alkhalaf, Gregory L. Challis e Neil J. Oldham. "Native ESI-MS and Collision-Induced Unfolding (CIU) of the Complex between Bacterial Elongation Factor-Tu and the Antibiotic Enacyloxin IIa". Journal of the American Society for Mass Spectrometry, 3 de junho de 2024. http://dx.doi.org/10.1021/jasms.4c00087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

"Crystal structure of EF-Tu bound to Phe-tRNAphe (tan) and a GTP analog (green). Two antibiotics, kirromycin and enacyloxin IIa, are shown superimposed and therefore disrupting EF-Tu function and cellular translation. For details, see the MicroReview by Pr". Molecular Microbiology 106, n.º 1 (20 de setembro de 2017): i. http://dx.doi.org/10.1111/mmi.13518.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia