Artigos de revistas sobre o tema "EMOLIS Dataset"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "EMOLIS Dataset".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Saadi, Wafa, Fatima Zohra Laallam, Messaoud Mezati, Dikra Louiza Youmbai e Nour Elhouda Messaoudi. "Enhancing emotion detection on Twitter: an ensemble clustering approach utilizing emojis and keywords across multilingual datasets". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, n.º 2 (13 de novembro de 2024): e10548. http://dx.doi.org/10.54021/seesv5n2-522.
Texto completo da fonteCzęstochowska, Justyna, Kristina Gligorić, Maxime Peyrard, Yann Mentha, Michał Bień, Andrea Grütter, Anita Auer, Aris Xanthos e Robert West. "On the Context-Free Ambiguity of Emoji". Proceedings of the International AAAI Conference on Web and Social Media 16 (31 de maio de 2022): 1388–92. http://dx.doi.org/10.1609/icwsm.v16i1.19393.
Texto completo da fonteArjun Kuruva e Dr. C. Nagaraju. "A Robust Hybrid Model for Text and Emoji Sentiment Analysis: Leveraging BERT and Pre-trained Emoji Embeddings". Bioscan 20, n.º 1 (24 de janeiro de 2025): 186–91. https://doi.org/10.63001/tbs.2025.v20.i01.pp186-191.
Texto completo da fonteNakonechnyi, O. G., O. A. Kapustian, Iu M. Shevchuk, M. V. Loseva e O. Yu Kosukha. "A intellectual system of analysis of reactions to news based on data from Telegram channels". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, n.º 3 (2022): 55–61. http://dx.doi.org/10.17721/1812-5409.2022/3.7.
Texto completo da fontePeng, Jiao, Yue He, Yongjuan Chang, Yanyan Lu, Pengfei Zhang, Zhonghong Ou e Qingzhi Yu. "A Social Media Dataset and H-GNN-Based Contrastive Learning Scheme for Multimodal Sentiment Analysis". Applied Sciences 15, n.º 2 (10 de janeiro de 2025): 636. https://doi.org/10.3390/app15020636.
Texto completo da fonteHauthal, Eva, Alexander Dunkel e Dirk Burghardt. "Emojis as Contextual Indicants in Location-Based Social Media Posts". ISPRS International Journal of Geo-Information 10, n.º 6 (12 de junho de 2021): 407. http://dx.doi.org/10.3390/ijgi10060407.
Texto completo da fonteAlmalki, Jameel. "A machine learning-based approach for sentiment analysis on distance learning from Arabic Tweets". PeerJ Computer Science 8 (26 de julho de 2022): e1047. http://dx.doi.org/10.7717/peerj-cs.1047.
Texto completo da fonteMadderi Sivalingam, Saravanan, Smitha Ponnaiyan Sarojam, Malathi Subramanian e Kalachelvi Thulasingam. "A new mining and decoding framework to predict expression of opinion on social media emoji’s using machine learning models". IAES International Journal of Artificial Intelligence (IJ-AI) 13, n.º 4 (1 de dezembro de 2024): 5005. http://dx.doi.org/10.11591/ijai.v13.i4.pp5005-5012.
Texto completo da fonteAnu Kiruthika M. e Angelin Gladston. "Implementation of Recurrent Network for Emotion Recognition of Twitter Data". International Journal of Social Media and Online Communities 12, n.º 1 (janeiro de 2020): 1–13. http://dx.doi.org/10.4018/ijsmoc.2020010101.
Texto completo da fonteChen, Zhenpeng, Yanbin Cao, Huihan Yao, Xuan Lu, Xin Peng, Hong Mei e Xuanzhe Liu. "Emoji-powered Sentiment and Emotion Detection from Software Developers’ Communication Data". ACM Transactions on Software Engineering and Methodology 30, n.º 2 (março de 2021): 1–48. http://dx.doi.org/10.1145/3424308.
Texto completo da fonteTang, Hongmei, Wenzhong Tang, Dixiongxiao Zhu, Shuai Wang, Yanyang Wang e Lihong Wang. "EMFSA: Emoji-based multifeature fusion sentiment analysis". PLOS ONE 19, n.º 9 (19 de setembro de 2024): e0310715. http://dx.doi.org/10.1371/journal.pone.0310715.
Texto completo da fonteHusain, Fatemah, e Ozlem Uzuner. "Investigating the Effect of Preprocessing Arabic Text on Offensive Language and Hate Speech Detection". ACM Transactions on Asian and Low-Resource Language Information Processing 21, n.º 4 (31 de julho de 2022): 1–20. http://dx.doi.org/10.1145/3501398.
Texto completo da fonteYang, Senqi, Xuliang Duan, Zeyan Xiao, Zhiyao Li, Yuhai Liu, Zhihao Jie, Dezhao Tang e Hui Du. "Sentiment Classification of Chinese Tourism Reviews Based on ERNIE-Gram+GCN". International Journal of Environmental Research and Public Health 19, n.º 20 (19 de outubro de 2022): 13520. http://dx.doi.org/10.3390/ijerph192013520.
Texto completo da fonteAl-Mutawa, Rihab Fahd, e Arwa Yousef Al-Aama. "User Opinion Prediction for Arabic Hotel Reviews Using Lexicons and Artificial Intelligence Techniques". Applied Sciences 13, n.º 10 (12 de maio de 2023): 5985. http://dx.doi.org/10.3390/app13105985.
Texto completo da fonteKulkongkoon, Theerawee, Nagul Cooharojananone e Rajalida Lipikorn. "Emoji’s sentiment score estimation using convolutional neural network with multi-scale emoji images". International Journal of Electrical and Computer Engineering (IJECE) 14, n.º 1 (1 de fevereiro de 2024): 698. http://dx.doi.org/10.11591/ijece.v14i1.pp698-710.
Texto completo da fonteBalcıoğlu, Yavuz Selim, Yelda Özkoçak, Yağmur Gümüşboğa e Erkut Altındağ. "From Symbols to Emojis: Analyzing Visual Communication Trends on Social Media". Studies in Media and Communication 13, n.º 2 (19 de março de 2025): 250. https://doi.org/10.11114/smc.v13i2.7509.
Texto completo da fonteKoltsova, Elena A., e Faina I. Kartashkova. "Digital Communication and Multimodal Features: Functioning of Emoji in Interpersonal Communication". RUDN Journal of Language Studies, Semiotics and Semantics 13, n.º 3 (30 de setembro de 2022): 769–83. http://dx.doi.org/10.22363/2313-2299-2022-13-3-769-783.
Texto completo da fonteAlturayeif, Nora, e Hamzah Luqman. "Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function". Applied Sciences 11, n.º 22 (12 de novembro de 2021): 10694. http://dx.doi.org/10.3390/app112210694.
Texto completo da fonteVimala, Dhulepalla. "Detection of Fake Online Reviews Using Semi Supervised and Supervised Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 04 (25 de abril de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem31613.
Texto completo da fonteAlawneh, Hussam, Ahmad Hasasneh e Mohammed Maree. "On the Utilization of Emoji Encoding and Data Preprocessing with a Combined CNN-LSTM Framework for Arabic Sentiment Analysis". Modelling 5, n.º 4 (7 de outubro de 2024): 1469–89. http://dx.doi.org/10.3390/modelling5040076.
Texto completo da fonteN, Bagiyalakshmi, e A. C. Kothandaraman. "Optimized Deep Learning Model for Sentimental Analysis to Improve Consumer Experience in E-Commerce Websites". Journal of Computer Allied Intelligence 2, n.º 3 (30 de junho de 2024): 41–54. http://dx.doi.org/10.69996/jcai.2024014.
Texto completo da fonteKong, Jeffery T. H., Filbert H. Juwono, Ik Ying Ngu, I. Gde Dharma Nugraha, Yan Maraden e W. K. Wong. "A Mixed Malay–English Language COVID-19 Twitter Dataset: A Sentiment Analysis". Big Data and Cognitive Computing 7, n.º 2 (27 de março de 2023): 61. http://dx.doi.org/10.3390/bdcc7020061.
Texto completo da fonteJi, Houjun. "Depression Detection on Twitter Text Based on Negative Emotion Score and Level of Depressed". Highlights in Science, Engineering and Technology 81 (26 de janeiro de 2024): 368–73. http://dx.doi.org/10.54097/ensgdz34.
Texto completo da fonteArcenal, Erika Kristine E., Licca Pauleen V. Capistrano, Marielle Jessie D. De Guzman, Micaela Isabel M. Forrosuelo e Janeson M. Miranda. "Comparative Analysis of Reddit Posts and ChatGPT-Generated Texts’ Linguistic Features: A Short Report on Artificial Intelligence’s Imitative Capabilities". International Journal of Multidisciplinary: Applied Business and Education Research 5, n.º 9 (23 de setembro de 2024): 3475–81. http://dx.doi.org/10.11594/ijmaber.05.09.06.
Texto completo da fonteNikhil,, Navneet. "Hate Speech Detection". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 05 (27 de maio de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem34783.
Texto completo da fonteVayadande, Kuldeep, Aditya Bodhankar, Ajinkya Mahajan, Diksha Prasad, Shivani Mahajan, Aishwarya Pujari e Riya Dhakalkar. "Classification of Depression on social media using Distant Supervision". ITM Web of Conferences 50 (2022): 01005. http://dx.doi.org/10.1051/itmconf/20225001005.
Texto completo da fonteKim, Ye-Hyun, Jungwon Cho e Jaechoon Jo. "Development of Real-time Soccer Match Comment Sentiment Analysis and Emoji Conversion System". International Journal on Advanced Science, Engineering and Information Technology 14, n.º 6 (25 de dezembro de 2024): 2114–20. https://doi.org/10.18517/ijaseit.14.6.11792.
Texto completo da fontePravin D. Kaware. "Indo-HateSpeech Analysis: A Multi-Level Hate Speech Classification Framework Using BERT Features and Machine Learning Models". Advances in Nonlinear Variational Inequalities 28, n.º 5s (24 de janeiro de 2025): 405–18. https://doi.org/10.52783/anvi.v28.3912.
Texto completo da fonteSudeep K. Hase. "Sentiment Classification on Multivariate Feature Selection on Social Media dataset using Hybrid Machine Learning Techniques". Journal of Information Systems Engineering and Management 10, n.º 1s (30 de dezembro de 2024): 525–39. https://doi.org/10.52783/jisem.v10i1s.234.
Texto completo da fonteCerrahoğlu, Enes, e Pınar Cihan. "Sentiment Analysis and Emojification of Tweets". International Conference on Pioneer and Innovative Studies 1 (13 de junho de 2023): 481–86. http://dx.doi.org/10.59287/icpis.876.
Texto completo da fonteFadhli, Imen, Lobna Hlaoua e Mohamed Nazih Omri. "Sentiment Analysis CSAM Model to Discover Pertinent Conversations in Twitter Microblogs". International Journal of Computer Network and Information Security 14, n.º 5 (8 de outubro de 2022): 28–46. http://dx.doi.org/10.5815/ijcnis.2022.05.03.
Texto completo da fonteZbiri, Asmae, Azeddine Hachmi, Dominique Haesen e Fatima Ezzahrae El Alaoui-Faris. "New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands". Ekológia (Bratislava) 41, n.º 1 (1 de março de 2022): 90–100. http://dx.doi.org/10.2478/eko-2022-0010.
Texto completo da fonteMayor, Eric, e Lucas M. Bietti. "Twitter, time and emotions". Royal Society Open Science 8, n.º 5 (maio de 2021): 201900. http://dx.doi.org/10.1098/rsos.201900.
Texto completo da fonteDolot, Dyea, e Arlene Opina. "Forms and Functions of Graphicons in Facebook Private Conversations Among Young Filipino Users". International Journal of Linguistics, Literature and Translation 4, n.º 6 (30 de junho de 2021): 62–73. http://dx.doi.org/10.32996/ijllt.2021.4.6.8.
Texto completo da fonteHachmi, Azeddine, Asmae Zbiri, Dominique Haesen, Fatima Ezzahrae El Alaoui-Faris e David A. Vaccari. "Performance Tests to Modeling Future Climate–vegetation Interactions in Virtual World: an Option for Application of Remote Sensed and Statistical Systems". WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 18 (31 de dezembro de 2021): 178–89. http://dx.doi.org/10.37394/23209.2021.18.22.
Texto completo da fonteAlshaabi, Thayer, Jane L. Adams, Michael V. Arnold, Joshua R. Minot, David R. Dewhurst, Andrew J. Reagan, Christopher M. Danforth e Peter Sheridan Dodds. "Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter". Science Advances 7, n.º 29 (julho de 2021): eabe6534. http://dx.doi.org/10.1126/sciadv.abe6534.
Texto completo da fonteAribowo, Agus Sasmito, e Siti Khomsah. "Implementation Of Text Mining For Emotion Detection Using The Lexicon Method (Case Study: Tweets About Covid-19)". Telematika 18, n.º 1 (16 de março de 2021): 49. http://dx.doi.org/10.31315/telematika.v18i1.4341.
Texto completo da fonteHemanth, Bollepalli Sri Sai. "Whatsapp Chat Analyzer Using Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 04 (18 de abril de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem31024.
Texto completo da fonteFadlan Amrullah e Achmad Solichin. "Analisis Emosi Pada Live Chat Youtube 'Mata Najwa: 3 Bacapres Bicara Gagasan' Menggunakan Pendekatan Lexicon dan Algoritma Naive Bayes". Jurnal Ticom: Technology of Information and Communication 12, n.º 3 (31 de maio de 2024): 121–28. http://dx.doi.org/10.70309/ticom.v12i3.132.
Texto completo da fonteHe, Jiabei. "Analyzing film and drama reviews: Distinguishing trolls from genuine audience feedback based on the BERT model". Applied and Computational Engineering 53, n.º 1 (28 de março de 2024): 213–19. http://dx.doi.org/10.54254/2755-2721/53/20241376.
Texto completo da fonteBao, Yuchen, Hongyi Huang e Zizhou Meng. "Sentiment analysis based on BiLSTM with attention mechanism on Chinese comment with stickers". Applied and Computational Engineering 38, n.º 1 (22 de janeiro de 2024): 26–34. http://dx.doi.org/10.54254/2755-2721/38/20230525.
Texto completo da fonteBeseiso, Majdi. "Word and Character Information Aware Neural Model for Emotional Analysis". Recent Patents on Computer Science 12, n.º 2 (25 de fevereiro de 2019): 142–47. http://dx.doi.org/10.2174/2213275911666181119112645.
Texto completo da fonteMazza Zago, Ricardo, e Luciane Agnoletti dos Santos Pedotti. "BERTugues: A Novel BERT Transformer Model Pre-trained for Brazilian Portuguese". Semina: Ciências Exatas e Tecnológicas 45 (20 de dezembro de 2024): e50630. https://doi.org/10.5433/1679-0375.2024.v45.50630.
Texto completo da fonteOlaniyan, Deborah, Roseline Oluwaseun Ogundokun, Olorunfemi Paul Bernard, Julius Olaniyan, Rytis Maskeliūnas e Hakeem Babalola Akande. "Utilizing an Attention-Based LSTM Model for Detecting Sarcasm and Irony in Social Media". Computers 12, n.º 11 (14 de novembro de 2023): 231. http://dx.doi.org/10.3390/computers12110231.
Texto completo da fonteKumar, K. Dileep. "Multilingual Hate Speech Detection Using NLP Techniques". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, n.º 03 (4 de março de 2025): 1–9. https://doi.org/10.55041/ijsrem42063.
Texto completo da fonteWylie, Michelle. "Culture and paralinguistic features ~!^^:-): East meets West in a virtual exchange between South Korea and England". Journal of Virtual Exchange 3 (SI-IVEC2019) (2 de dezembro de 2020): 49–67. http://dx.doi.org/10.21827/jve.3.35807.
Texto completo da fonteBavkar, Dnyaneshwar Madhukar, Ramgopal Kashyap e Vaishali Khairnar. "Multimodal Sarcasm Detection via Hybrid Classifier with Optimistic Logic". Journal of Telecommunications and Information Technology 3, n.º 2022 (29 de setembro de 2022): 97–114. http://dx.doi.org/10.26636/jtit.2022.161622.
Texto completo da fonteAgarkar, Priyanshu T., Pranav Chopdekar, Sahil Gujar e Komal Chitnis. "SenseWorth – A Tweets Classifier". International Journal for Research in Applied Science and Engineering Technology 10, n.º 12 (31 de dezembro de 2022): 1040–48. http://dx.doi.org/10.22214/ijraset.2022.48056.
Texto completo da fonteXU, CAIMING, SILEI SUI, Keisuke Okuno, Silvia Pascual-Sabater, Cristina Fillat e Ajay Goel. "Abstract 3821: Berberine and emodin synergistically suppress the EGFR signaling cascade by targeting LAMB3 in pancreatic ductal adenocarcinoma". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 3821. http://dx.doi.org/10.1158/1538-7445.am2023-3821.
Texto completo da fonteYang, Tao, Ziyu Liu, Yu Lu e Jun Zhang. "Centrifugal Navigation-Based Emotion Computation Framework of Bilingual Short Texts with Emoji Symbols". Electronics 12, n.º 15 (3 de agosto de 2023): 3332. http://dx.doi.org/10.3390/electronics12153332.
Texto completo da fonte