Artigos de revistas sobre o tema "Emissive cathode"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Emissive cathode".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chaharsoughi, Mina Shiran, Mohammad Jafar Hadianfard e Mohammad Mahdi Shiezadeh. "Study the Effect of Nanoemissive Materials on M-Type Cathode Performance". Advanced Materials Research 829 (novembro de 2013): 772–77. http://dx.doi.org/10.4028/www.scientific.net/amr.829.772.
Texto completo da fonteStępińska, Izabela, Elżbieta Czerwosz, Mirosław Kozłowski, Halina Wronka e Piotr Dłużewski. "Studies of field emission process influence on changes in CNT films with different CNT superficial density". Materials Science-Poland 36, n.º 1 (18 de maio de 2018): 27–33. http://dx.doi.org/10.1515/msp-2018-0001.
Texto completo da fonteIsakova, Yulia I., Galina E. Kholodnaya e Alexander I. Pushkarev. "Influence of Cathode Diameter on the Operation of a Planar Diode with an Explosive Emission Cathode". Advances in High Energy Physics 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/649828.
Texto completo da fonteChen, Jing, Qianqian Huang e Wei Lei. "Dual-Facets Emissive Quantum-Dot Light-Emitting Diode Based on AZO Electrode". Materials 15, n.º 3 (19 de janeiro de 2022): 740. http://dx.doi.org/10.3390/ma15030740.
Texto completo da fonteYang, Yang, Wen Zheng Yang, Wei Dong Tang e Chuan Dong Sun. "Temperature Dependent Study of Carrier Diffusion in Photon Enhanced Thermionic Emission Solar Converters". Advanced Materials Research 772 (setembro de 2013): 634–39. http://dx.doi.org/10.4028/www.scientific.net/amr.772.634.
Texto completo da fonteNouzman, L., e G. L. Frey. "Directed migration of additives to form top interlayers in polymer light emitting diodes". Journal of Materials Chemistry C 5, n.º 48 (2017): 12744–51. http://dx.doi.org/10.1039/c7tc04586g.
Texto completo da fonteSibbett, W., S. C. Douglas, M. I. Harbour, B. A. Kerr, S. N. Spark e Y. M. Saveliev. "Effect of cathode end caps and a cathode emissive surface on relativistic magnetron operation". IEEE Transactions on Plasma Science 28, n.º 3 (junho de 2000): 478–84. http://dx.doi.org/10.1109/27.887651.
Texto completo da fonteBecatti, G., F. Burgalassi, F. Paganucci, M. Zuin e D. M. Goebel. "Resistive MHD modes in hollow cathodes external plasma". Plasma Sources Science and Technology 31, n.º 1 (1 de janeiro de 2022): 015016. http://dx.doi.org/10.1088/1361-6595/ac43c4.
Texto completo da fonteYokoo, Kuniyoshi. "Experiments of highly emissive metal–oxide–semiconductor electron tunneling cathode". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, n.º 3 (maio de 1996): 2096. http://dx.doi.org/10.1116/1.588878.
Texto completo da fonteHartmann, W., G. Kirkman, V. Dominic e M. A. Gundersen. "A super-emissive self-heated cathode for high-power applications". IEEE Transactions on Electron Devices 36, n.º 4 (abril de 1989): 825–26. http://dx.doi.org/10.1109/16.22493.
Texto completo da fonteGrigoriev, Sergey, Alexander Metel, Marina Volosova e Yury Melnik. "Improvement of Thin Film Adhesion Due to Bombardment by Fast Argon Atoms". Coatings 8, n.º 9 (28 de agosto de 2018): 303. http://dx.doi.org/10.3390/coatings8090303.
Texto completo da fonteJenkins, S. N., D. K. Barber, M. J. Whiting e M. A. Baker. "Preliminary results on the chemical characterisation of the cathode nickel—emissive layer interface in oxide cathodes". Applied Surface Science 215, n.º 1-4 (junho de 2003): 78–86. http://dx.doi.org/10.1016/s0169-4332(03)00278-2.
Texto completo da fonteZemskov, Yu A., Yu I. Mamontov, I. V. Uimanov, N. M. Zubarev, A. V. Kaziev, M. M. Kharkov e S. A. Barengolts. "Instabilities of electrical properties of He-induced W “fuzz” within the pre-breakdown and breakdown regimes". Journal of Physics: Conference Series 2064, n.º 1 (1 de novembro de 2021): 012004. http://dx.doi.org/10.1088/1742-6596/2064/1/012004.
Texto completo da fonteSirijarutus, Wattanaruk, Sittan Charoensuwan, Pawonwan Thanakit, Sirapat Pratontep e Darinee Sae-Tang Phromyothin. "A Study and Characterization of Photophysical Properties of Fluorene Derivative Thin Film". Key Engineering Materials 675-676 (janeiro de 2016): 201–4. http://dx.doi.org/10.4028/www.scientific.net/kem.675-676.201.
Texto completo da fonteLi, Jing-Ju, e J. X. Ma. "Sheath near a negatively biased electron-emitting wall in an ion-beam-plasma system and its implication to experimental measurement". Physics of Plasmas 30, n.º 1 (janeiro de 2023): 013510. http://dx.doi.org/10.1063/5.0126650.
Texto completo da fonteYANG, KI-SUNG, HO-SIK LEE, SEUNG-UN KIM, YOON-KI JANG, DOO-SEOK KIM, HOON-KYU SHIN, YOUNG-SOO KWON e CHUNGKYUN KIM. "ELECTRICAL AND OPTICAL PROPERTIES OF OLED USING NEW EMISSIVE MATERIAL Al2Nq4". International Journal of Nanoscience 05, n.º 06 (dezembro de 2006): 859–64. http://dx.doi.org/10.1142/s0219581x06005273.
Texto completo da fonteSharypov, K. A., M. R. Ul'masculov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, G. A. Mesyats, V. V. Rostov e M. D. Kolomiets. "Current waveform reconstruction from an explosively emissive cathode at a subnanosecond voltage front". Review of Scientific Instruments 85, n.º 12 (dezembro de 2014): 125104. http://dx.doi.org/10.1063/1.4902853.
Texto completo da fontePoulos, M. J. "Model for the operation of an emissive cathode in a large magnetized-plasma". Physics of Plasmas 26, n.º 2 (fevereiro de 2019): 022104. http://dx.doi.org/10.1063/1.5063596.
Texto completo da fonteOiler A. P., Liziakin G. D., Gavrikov A.V. e Smirnov V.P. "Velocity of plasma rotation in reflex discharge with themionic cathode". Technical Physics 92, n.º 10 (2022): 1327. http://dx.doi.org/10.21883/tp.2022.10.54359.139-22.
Texto completo da fonteLiu, Wenxing, Rongzhen Cui, Xi Guan, Weidong Sun, Liang Zhou e Dashan Qin. "Investigating the exciton formation zone and its roles in phosphorescent organic light emitting diodes". Semiconductor Science and Technology 36, n.º 12 (9 de novembro de 2021): 125014. http://dx.doi.org/10.1088/1361-6641/ac2fb5.
Texto completo da fonteLv, Wenmei, Lian Wang, Yiwei Lu, Dong Wang, Hui Wang, Yuxin Hao, Yuanpeng Zhang, Zeqi Sun e Yongliang Tang. "A Study on the Field Emission Characteristics of High-Quality Wrinkled Multilayer Graphene Cathodes". Nanomaterials 14, n.º 7 (30 de março de 2024): 613. http://dx.doi.org/10.3390/nano14070613.
Texto completo da fonteGeorgiopoulou, Zoi, Apostolis Verykios, Kalliopi Ladomenou, Katerina Maskanaki, Georgios Chatzigiannakis, Konstantina-Kalliopi Armadorou, Leonidas C. Palilis et al. "Carbon Nanodots as Electron Transport Materials in Organic Light Emitting Diodes and Solar Cells". Nanomaterials 13, n.º 1 (30 de dezembro de 2022): 169. http://dx.doi.org/10.3390/nano13010169.
Texto completo da fonteLabrunie, G., e R. Meyer. "Novel type of emissive flat panel display: the matrixed cold-cathode microtip fluorescent display". Displays 8, n.º 1 (janeiro de 1987): 37–40. http://dx.doi.org/10.1016/0141-9382(87)90007-2.
Texto completo da fonteShin, Eun Chul, Hui Chul Ahn, Wone Keun Han, Tae Wan Kim, Won Jae Lee, Jin Woong Hong, Dong Hoe Chung e Min Jong Song. "Effect of Li2O/Al Cathode in Alq3 Based Organic Light-Emitting Diodes". Journal of Nanoscience and Nanotechnology 8, n.º 9 (1 de setembro de 2008): 4684–87. http://dx.doi.org/10.1166/jnn.2008.ic33.
Texto completo da fonteGuo, Tzung-Fang, Fuh-Shun Yang, Zen-Jay Tsai, Guan-Weng Feng, Ten-Chin Wen, Sung-Nien Hsieh, Chia-Tin Chung e Ching-In Wu. "High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al∕Ag composite cathode". Applied Physics Letters 89, n.º 5 (31 de julho de 2006): 051103. http://dx.doi.org/10.1063/1.2234317.
Texto completo da fonteBurgoa, José M., Cecilia González-Medina, Ramón Gómez-Aguilar e Jaime Ortiz-López. "Electrical Behavior I-V Theoretical-Experimental OLEDS". MRS Proceedings 1613 (2014): 121–26. http://dx.doi.org/10.1557/opl.2014.168.
Texto completo da fonteTierno, S. P., J. M. Donoso, J. L. Domenech-Garret e L. Conde. "Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas". Physics of Plasmas 23, n.º 1 (janeiro de 2016): 013503. http://dx.doi.org/10.1063/1.4939042.
Texto completo da fonteSeif, Mujan N., T. John Balk e Matthew J. Beck. "Desorption from Hot Scandate Cathodes: Effects on Vacuum Device Interior Surfaces after Long-Term Operation". Materials 13, n.º 22 (16 de novembro de 2020): 5149. http://dx.doi.org/10.3390/ma13225149.
Texto completo da fonteVasan, R., H. Salman e M. O. Manasreh. "All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers". MRS Advances 1, n.º 4 (2016): 305–10. http://dx.doi.org/10.1557/adv.2016.129.
Texto completo da fonteGrigoriev, Sergei. "Milling of Dielectric Ceramics by Fast Argon Atoms". Key Engineering Materials 723 (dezembro de 2016): 329–34. http://dx.doi.org/10.4028/www.scientific.net/kem.723.329.
Texto completo da fonteArnas Capeau, C., G. Prasad, G. Bachet e F. Doveil. "Analysis of the self‐oscillations instability due to the plasma coupling with an emissive hot cathode sheath". Physics of Plasmas 3, n.º 9 (setembro de 1996): 3331–36. http://dx.doi.org/10.1063/1.871602.
Texto completo da fonteLin, Ming-Wei, Ruei-Tang Chen, Chia-Hsin Yeh, Ten-Chin Wen e Tzung-Fang Guo. "Bright, efficient, deep blue-emissive polymer light-emitting diodes of suitable hole-transport layer and cathode design". Organic Electronics 13, n.º 12 (dezembro de 2012): 3067–73. http://dx.doi.org/10.1016/j.orgel.2012.09.009.
Texto completo da fonteVincent, Benjamin, Sedina Tsikata, George-Cristian Potrivitu, Laurent Garrigues, Gaétan Sary e Stéphane Mazouffre. "Electron properties of an emissive cathode: analysis with incoherent thomson scattering, fluid simulations and Langmuir probe measurements". Journal of Physics D: Applied Physics 53, n.º 41 (23 de julho de 2020): 415202. http://dx.doi.org/10.1088/1361-6463/ab9974.
Texto completo da fonteHao, Shi Ming, Hui Fang Wang e Dong Hui Zhao. "The Preparation and Properties Research on Lanthanum-Rich Film Cathode". Advanced Materials Research 228-229 (abril de 2011): 755–58. http://dx.doi.org/10.4028/www.scientific.net/amr.228-229.755.
Texto completo da fonteОйлер, А. П., Г. Д. Лизякин, А. В. Гавриков e В. П. Смирнов. "Скорость вращения плазмы в отражательном разряде с термокатодом". Журнал технической физики 92, n.º 10 (2022): 1529. http://dx.doi.org/10.21883/jtf.2022.10.53245.139-22.
Texto completo da fonteGioti, Maria. "Spectroscopic Ellipsometry Studies on Solution-Processed OLED Devices: Optical Properties and Interfacial Layers". Materials 15, n.º 24 (19 de dezembro de 2022): 9077. http://dx.doi.org/10.3390/ma15249077.
Texto completo da fonteHsieh, Sung-Nien, Ten-Chin Wen e Tzung-Fang Guo. "Improved Performance of Top-Emissive Polymer Light-Emitting Device with Semitransparent Ag Cathode with the Aid of Au Nanoparticles". Japanese Journal of Applied Physics 46, n.º 3A (8 de março de 2007): 932–36. http://dx.doi.org/10.1143/jjap.46.932.
Texto completo da fonteRathkey, Doug. "Evolution and Comparison of Electron Sources". Microscopy Today 1, n.º 4 (junho de 1993): 16–17. http://dx.doi.org/10.1017/s1551929500067432.
Texto completo da fonteSwanson, L. W., e D. S. Rathkey. "A comparison of Schottky emission and cold field-emission cathodes". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 de agosto de 1989): 90–91. http://dx.doi.org/10.1017/s0424820100152422.
Texto completo da fonteTaikin, Andrei Yu, Ilya A. Savichev, Maxim A. Popov, Evgeniy M. Anokhin, Viktor B. Kireev, Ilya N. Kosarev e Evgeniy P. Sheshin. "Comparison and analysis of field emission characteristics of carbon cathodes based on PAN fiber and CNT filaments". Image Journal of Advanced Materials and Technologies 7, n.º 1 (2022): 046–57. http://dx.doi.org/10.17277/jamt.2022.01.pp.046-057.
Texto completo da fonteLi, Jian-quan, Xin-yao Xie, Shu-han Li e Qing-he Zhang. "Reliable potential and spatial size of virtual cathode obtained by an emissive probe with accurate filament temperature in a vacuum". Vacuum 200 (junho de 2022): 111013. http://dx.doi.org/10.1016/j.vacuum.2022.111013.
Texto completo da fonteNg, Calvin Yi Bin, Keat Hoe Yeoh, Thomas J. Whitcher, Noor Azrina Talik, Kai Lin Woon, Thanit Saisopa, Hideki Nakajima, Ratchadaporn Supruangnet e Prayoon Songsiriritthigul. "High efficiency solution processed fluorescent yellow organic light-emitting diode through fluorinated alcohol treatment at the emissive layer/cathode interface". Journal of Physics D: Applied Physics 47, n.º 1 (5 de dezembro de 2013): 015106. http://dx.doi.org/10.1088/0022-3727/47/1/015106.
Texto completo da fontePredeep, P., T. A. Shahul Hameed, J. Aneesh e M. R. Baiju. "Organic Light Emitting Diodes: Effect of Annealing the Hole Injection Layer on the Electrical and Optical Properties". Solid State Phenomena 171 (maio de 2011): 39–50. http://dx.doi.org/10.4028/www.scientific.net/ssp.171.39.
Texto completo da fonteFairchild, Steven B., Chelsea E. Amanatides, Thiago A. de Assis, Paul T. Murray, Dmitri Tsentalovich, Jeffrey L. Ellis, Salvador Portillo et al. "Field emission cathodes made from knitted carbon nanotube fiber fabrics". Journal of Applied Physics 133, n.º 9 (7 de março de 2023): 094302. http://dx.doi.org/10.1063/5.0123120.
Texto completo da fonteGorokh, G. G., I. A. Taratyn, A. N. Pligovka, A. A. Lazavenka e A. I. Zakhlebayeva. "AUTOELECTRONIC CATHODES BASED ON ARRAYS OF NIOBIUM-OXIDE COLUMNAR NANOSTRUCTURES FOR FIELD EMISSION DISPLAYS". Doklady BGUIR, n.º 7 (125) (7 de dezembro de 2019): 51–58. http://dx.doi.org/10.35596/1729-7648-2019-125-7-51-58.
Texto completo da fonteChepusov, A. S., A. A. Komarskiy e S. R. Korzhenevskiy. "Investigation of changes in field electron emission characteristics of industrial fine-grained graphite when operated in an argon atmosphere up to 10–2 Pa". Journal of Physics: Conference Series 2064, n.º 1 (1 de novembro de 2021): 012107. http://dx.doi.org/10.1088/1742-6596/2064/1/012107.
Texto completo da fonteRoy, Amitava, R. Menon, Vishnu Sharma, Ankur Patel, Archana Sharma e D. P. Chakravarthy. "Features of 200 kV, 300 ns reflex triode vircator operation for different explosive emission cathodes". Laser and Particle Beams 31, n.º 1 (27 de novembro de 2012): 45–54. http://dx.doi.org/10.1017/s026303461200095x.
Texto completo da fonteLobanov, Svyatoslav V., Ivan A. Fedorov e Evgeniy P. Sheshin. "DEVELOPING MANUFACTURING TECHNOLOGY OF COMPOSITE CATHODES WITH METHOD OF PRESSING PYROLYTIC GRAPHITE WITH TRIPLE CARBONATE". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, n.º 8 (17 de julho de 2018): 81. http://dx.doi.org/10.6060/tcct.20165908.29y.
Texto completo da fonteWu, Ping, Jiayao Liu, Ye Hua e Meng Zhu. "Quantitative evaluation of emission uniformity of the annular explosive emission cathode". Physics of Plasmas 29, n.º 11 (novembro de 2022): 113101. http://dx.doi.org/10.1063/5.0121618.
Texto completo da fonteLee, Ha Rim, Da Woon Kim, Alfi Rodiansyah, Boklae Cho, Joonwon Lim e Kyu Chang Park. "Investigation of the Effect of Structural Properties of a Vertically Standing CNT Cold Cathode on Electron Beam Brightness and Resolution of Secondary Electron Images". Nanomaterials 11, n.º 8 (26 de julho de 2021): 1918. http://dx.doi.org/10.3390/nano11081918.
Texto completo da fonte