Literatura científica selecionada sobre o tema "Emergent hydrodynamics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Emergent hydrodynamics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Emergent hydrodynamics"
Joshi, M. K., F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap e C. F. Roos. "Observing emergent hydrodynamics in a long-range quantum magnet". Science 376, n.º 6594 (13 de maio de 2022): 720–24. http://dx.doi.org/10.1126/science.abk2400.
Texto completo da fonteWang, Yuting, Huilan Zhang, Pingping Yang e Yunqi Wang. "Experimental Study of Overland Flow through Rigid Emergent Vegetation with Different Densities and Location Arrangements". Water 10, n.º 11 (12 de novembro de 2018): 1638. http://dx.doi.org/10.3390/w10111638.
Texto completo da fonteManna, Raj Kumar, e P. B. Sunil Kumar. "Emergent topological phenomena in active polymeric fluids". Soft Matter 15, n.º 3 (2019): 477–86. http://dx.doi.org/10.1039/c8sm01981a.
Texto completo da fonteZhang, Bokai, Premkumar Leishangthem, Yang Ding e Xinliang Xu. "An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria". Proceedings of the National Academy of Sciences 118, n.º 28 (6 de julho de 2021): e2100145118. http://dx.doi.org/10.1073/pnas.2100145118.
Texto completo da fonteSáenz, Pedro J., Tudor Cristea-Platon e John W. M. Bush. "A hydrodynamic analog of Friedel oscillations". Science Advances 6, n.º 20 (maio de 2020): eaay9234. http://dx.doi.org/10.1126/sciadv.aay9234.
Texto completo da fonteLAUGHLIN, R. B. "EMERGENT RELATIVITY". International Journal of Modern Physics A 18, n.º 06 (10 de março de 2003): 831–53. http://dx.doi.org/10.1142/s0217751x03014071.
Texto completo da fonteZu, C., F. Machado, B. Ye, S. Choi, B. Kobrin, T. Mittiga, S. Hsieh et al. "Emergent hydrodynamics in a strongly interacting dipolar spin ensemble". Nature 597, n.º 7874 (1 de setembro de 2021): 45–50. http://dx.doi.org/10.1038/s41586-021-03763-1.
Texto completo da fonteMaji, Soumen, Prashanth Hanmaiahgari, Ram Balachandar, Jaan Pu, Ana Ricardo e Rui Ferreira. "A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels". Water 12, n.º 4 (24 de abril de 2020): 1218. http://dx.doi.org/10.3390/w12041218.
Texto completo da fonteCornacchia, Loreta, Geraldene Wharton, Grieg Davies, Robert C. Grabowski, Stijn Temmerman, Daphne van der Wal, Tjeerd J. Bouma e Johan van de Koppel. "Self-organization of river vegetation leads to emergent buffering of river flows and water levels". Proceedings of the Royal Society B: Biological Sciences 287, n.º 1931 (15 de julho de 2020): 20201147. http://dx.doi.org/10.1098/rspb.2020.1147.
Texto completo da fonteSuh, In-Saeng, Grant J. Mathews, J. Reese Haywood e N. Q. Lan. "Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions". Advances in Astronomy 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6127031.
Texto completo da fonteTeses / dissertações sobre o assunto "Emergent hydrodynamics"
Liu, David. "Flow through Rigid Vegetation Hydrodynamics". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/35068.
Texto completo da fonteMaster of Science
Maji, S., P. R. Hanmaiahgari, R. Balachandar, Jaan H. Pu, A. M. Ricardo e R. M. L. Ferreira. "A review on hydrodynamics of free surface flows in emergent vegetated channels". MDPI, 2020. http://hdl.handle.net/10454/17820.
Texto completo da fonteThis review paper addresses the structure of the mean flow and key turbulence quantities in free-surface flows with emergent vegetation. Emergent vegetation in open channel flow affects turbulence, flow patterns, flow resistance, sediment transport, and morphological changes. The last 15 years have witnessed significant advances in field, laboratory, and numerical investigations of turbulent flows within reaches of different types of emergent vegetation, such as rigid stems, flexible stems, with foliage or without foliage, and combinations of these. The influence of stem diameter, volume fraction, frontal area of stems, staggered and non-staggered arrangements of stems, and arrangement of stems in patches on mean flow and turbulence has been quantified in different research contexts using different instrumentation and numerical strategies. In this paper, a summary of key findings on emergent vegetation flows is offered, with particular emphasis on: (1) vertical structure of flow field, (2) velocity distribution, 2nd order moments, and distribution of turbulent kinetic energy (TKE) in horizontal plane, (3) horizontal structures which includes wake and shear flows and, (4) drag effect of emergent vegetation on the flow. It can be concluded that the drag coefficient of an emergent vegetation patch is proportional to the solid volume fraction and average drag of an individual vegetation stem is a linear function of the stem Reynolds number. The distribution of TKE in a horizontal plane demonstrates that the production of TKE is mostly associated with vortex shedding from individual stems. Production and dissipation of TKE are not in equilibrium, resulting in strong fluxes of TKE directed outward the near wake of each stem. In addition to Kelvin–Helmholtz and von Kármán vortices, the ejections and sweeps have profound influence on sediment dynamics in the emergent vegetated flows.
El, Allaoui Nazha. "Modified hydrodynamics in fragmented canopies exposed to oscillatory flows". Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/403066.
Texto completo da fonteL'objectiu general d'aquesta tesi doctoral ha estat contribuir a entendre la modificació de la hidrodinàmica en praderies aquàtiques fragmentades. En aquesta tesi doctoral s’ha estudiat l'efecte de diferents paràmetres com ara la densitat de la praderia, l'alçada de la planta i la flexibilitat i l'arquitectura dels blancs sense vegetació. S'han discutit les conseqüències ecològiques dels resultats. Els resultats assenyalen que els fluxos de partícules biològiques, nutrients i sediments en praderies fragmentades són modificats en comparació amb els que s’obtindrien en praderies no fragmentades, fet que modifica la seva funció ecològica. Per tant, les praderies poden optimitzar les seves característiques estructurals per moderar l'impacte de la fragmentació. Aquesta tesi mostra que la densitat de plantes i flexibilitat interactua amb les dimensions del blanc i el grau de fragmentació per facilitar el refugi d'una manera no prevista anteriorment
Alarcón, Oseguera Francisco. "Computational study of the emergent behavior of micro-swimmer suspensions". Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/394065.
Texto completo da fonteLos sistemas activos se definen como materiales fuera del equilibrio termodinámico compuestos por muchas unidades interactuantes que individualmente consumen energía y colectivamente generan movimiento o estreses mecánicos. Ejemplos se pueden encontrar en un enorme rango de escalas de longitud, desde el mundo biológico hasta artificial, incluyendo organismos unicelulares, tejidos y organismos pluricelulares, grupos de animales, coloides auto-propulsados y nano-nadadores artificiales. Actualmente se están desarrollando experimentos en este campo a un ritmo muy veloz, en consecuencia son necesarias nuevas ideas teóricas para traer unidad al campo de estudio e identificar comportamientos “universales” en estos sistemas propulsados internamente. El objetivo de esta tesis es el estudiar mediante simulaciones numéricas, el comportamiento colectivo de un modelo de micro-nadadores. En particular, el modelo de squirmers, donde el movimiento del fluido es axi-simétrico. Existen estructuras coherentes que emergen de estos sistemas así que, el entender si las estructuras coherentes son generadas por la firma hidrodinámica intrínseca de los squirmers individuales o por un efecto de tamaño finito se vuelve algo de primordial importancia. Nosotros también estudiamos la influencia que tiene la geometría en la aparición de estructuras coherentes, la interacción directa entre las partículas, la concentración, etc.
Cecile, Mario Guillaume. "Exploring quantum dynamics : from hydrodynamics to measurement induced phase transition". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1298.
Texto completo da fonteIn this thesis, we take a deep dive into the world of quantum dynamics, aiming to understand the complex behaviours that arise in quantum many-body systems and the emergence of hydrodynamics behaviour. Throughout the chapters, we simplify key concepts essential for understanding how quantum systems operate. Chapter 1 presents an overview of fundamental concepts on emergent phenomena in quantum integrable systems and generalized hydrodynamics, which is essential to understand the complexities of quantum dynamics. Additionally, we offer an in-depth introduction to Matrix Product States, which are a valuable tool for efficiently simulating quantum dynamics in 1D systems. In Chapter 2, we develop a model to describe the relaxation of spin helices using the framework of generalized hydrodynamics with diffusive corrections and a modified version of the local density approximation. Our analysis demonstrates that this hydrodynamic framework accurately reproduces the experimentally observed relaxation dynamics. Additionally, it predicts the long-term relaxation behaviour, which lies beyond the experimentally accessible time scales. Our theoretical framework elucidates the occurrence of temporal regimes exhibiting seemingly anomalous diffusion and highlights the asymmetry between positive and negative anisotropy regimes at short and intermediate time intervals. Chapter 3 delves into the intriguing phenomena observed in the easy-axis regime |Δ| ≥ 1, where initial states with zero magnetic fluctuations instead locally relax to an exotic equilibrium states that we will refer to as squeezed generalized Gibbs ensemble. At the isotropic point, interestingly, we found an unusual behaviour which explicitly depend on the initial state. Namely, for the Néel state, we found extensive fluctuations and a super-diffusive dynamical exponent compatible with Kardar-Parisi-Zhang universality. For another non-fluctuating initial state, e.g., product state of spin singlets, we instead found diffusive scaling. In Chapter 4, we investigate the time evolution of an extended quantum spin chains under continuous monitoring using matrix product states with a fixed bond dimension, employing the Time-Dependent Variational Principle algorithm. This algorithm yields an effective classical nonlinear evolution with a conserved charge, offering an approximation to the true quantum evolution with some error. We find that the error rate exhibits a phase transition as the strength of the monitoring varies, and this transition can be accurately identified through scaling analysis with relatively small bond dimensions. Our approach enables efficient numerical determination of critical parameters associated with measurement-induced phase transitions in many-body quantum systems. Furthermore, in the presence of U(1) global spin charge, we observe a distinct charge-sharpening transition, which occurs independently of the entanglement transition. This transition is identified by analysing the charge fluctuations within a local subset of the system over extended time periods. Our findings highlight the effectiveness of TDVP time evolution as a means to detect measurement-induced phase transitions in systems of varying dimensions and sizes.Finally, the last chapter provides a conclusive summary of the findings and discusses potential avenues for future research
Feriani, Luigi. "Understanding the collective dynamics of motile cilia in human airways". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288418.
Texto completo da fonteJerbi, Zouhaier. "Contribution à l'étude de l'étalement de matériaux fondus avec solidification". Grenoble INPG, 1996. http://www.theses.fr/1996INPG0216.
Texto completo da fonteCheung, Chun Ming Mark. "Magnetic flux emergence in the solar photosphere". Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B597-A.
Texto completo da fonteLivros sobre o assunto "Emergent hydrodynamics"
M, Soward A., ed. Fluid dynamics and dynamos in astrophysics and geophysics: Reviews emerging from the Durham Symposium on Astrophysical Fluid Mechanics, July 29 to August 8, 2002. Boca Raton: CRC Press, 2005.
Encontre o texto completo da fonteEmerging Techniques in Drag Reduction. Wiley, 1996.
Encontre o texto completo da fonteMeshell, Lida. Hydrodynamic Cavitation : an Emerging Technology in a Chemical Process Industry: Characteristics of Fluid Flow. Independently Published, 2021.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Emergent hydrodynamics"
Maji, Soumen, Susovan Pal, Prashanth Reddy Hanmaiahgari e Vikas Garg. "Turbulent Hydrodynamics Along Lateral Direction in and Around Emergent and Sparse Vegetated Open-Channel Flow". In Water Science and Technology Library, 455–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_39.
Texto completo da fontePal, Debasish, Bapon Halder e Prashanth R. Hanmaiahgari. "Comparison of Turbulent Hydrodynamics with and without Emergent and Sparse Vegetation Patch in Free Surface Flow". In Water Science and Technology Library, 205–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_18.
Texto completo da fonteMahanti, Naveen Kumar, Subir Kumar Chakraborty, S. Shiva Shankar e Ajay Yadav. "Hydrodynamic Cavitation Technology for Food Processing and Preservation". In Emerging Thermal and Nonthermal Technologies in Food Processing, 199–224. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429297335-8.
Texto completo da fonteClaus, James R. "Application of hydrodynamic shock wave processing associated with meat and processed meat products". In Emerging Technologies in Meat Processing, 171–210. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118350676.ch7.
Texto completo da fonteRios, S., A. Vianada Fonseca, L. Ribeiro, C. Cengiz e S. J. M. van Eekelen. "Centrifuge model tests to evaluate the stability of embankments in hydrodynamic conditions". In Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society, 1920–22. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003431749-360.
Texto completo da fonteSingh, Daljeet, Erkki Vihriälä, Mariella Särestöniemi e Teemu Myllylä. "Microwave Technique Based Noninvasive Monitoring of Intracranial Pressure Using Realistic Phantom Models". In Communications in Computer and Information Science, 413–25. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59091-7_27.
Texto completo da fonteBellona, Christopher L., e Jörg E. Drewes. "Comparing the Phenomenological and Hydrodynamic Modeling Approaches for Describing the Rejection of Emerging Nonionic Organic Contaminants by a Nanofiltration Membrane". In ACS Symposium Series, 397–420. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1048.ch020.
Texto completo da fonteCamarillo E., R. M., J. A. Padilla M., J. A. García M., C. A. Ocón D., Ch Reyes C., J. M. Camarillo E. e R. Rodríguez R. "Auto-Calibration and Micro-Flow Injection Procedure Based on Automated Hydrodynamic System for Spectrophotometric Determination of Cobalt". In Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, 255–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28513-9_36.
Texto completo da fonteRanjan, P., P. Fischer e R. O. Tinoco. "Investigation of hydrodynamics and sediment transport within emergent vegetation canopy". In River Flow 2020, 1595–600. CRC Press, 2020. http://dx.doi.org/10.1201/b22619-222.
Texto completo da fonteLimmer, David T. "Fundamental postulates and definitions". In Statistical Mechanics and Stochastic Thermodynamics, 1–30. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198919858.003.0001.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Emergent hydrodynamics"
Gupta, Aditya, Manasa R. Behera e Amin Heidarpour. "Numerical Modeling of Wave Damping Induced by Emerged Moving Vegetation". In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18588.
Texto completo da fonteChen, Yuxiang, e Ye Gao. "Hydrodynamics Simulation on Axisymmetric Bodies Emerging from an Infinite Moving Plane". In 2010 International Conference on Computational Intelligence and Software Engineering (CiSE). IEEE, 2010. http://dx.doi.org/10.1109/cise.2010.5676715.
Texto completo da fonteSun, Zhiyong, Hui Li e Heyun Miao. "Numerical Investigation on the Hydrodynamic Characteristics in the Tank of Aquaculture Vessel". In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-126082.
Texto completo da fontePaczkowski, K. W., P. Zhang, R. Rogers e N. Richardson. "Fluid Structure Interaction Study on Dynamic Response of a Capped Drilling Riser Filled With Mud". In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23329.
Texto completo da fonteTomiyama, Ryo, Tatsuhiko Uchida, Daisuke Kobayashi, Misako Hatono e Satoshi Yokojima. "Effects of an emergent cylinder in a group on water flows and evaluation of hydrodynamic force". In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc252171192022958.
Texto completo da fonteVasan, A. Mercy, e V. Gopalakrishnan. "Hydrodynamic Modeling of Circulating Fluidised Bed Boilers: An Overview". In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87191.
Texto completo da fonteDmitriev, Alexandr S. "Fluctuation Hydrodynamics, Thermophoresis of Nanoparticles and Heat Transfer in Nanofluids". In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75205.
Texto completo da fonteLaraqi, N., M. M. Rashidi, J. M. Garcia de Maria e A. Bairi. "Thermo-hydrodynamic behaviour of a thin lubricant film". In 2010 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications (ThETA). IEEE, 2010. http://dx.doi.org/10.1109/theta.2010.5766392.
Texto completo da fonteDegtyarev, A., I. Gankevich e V. Khramushin. "DIRECT COMPUTATIONAL EXPERIMENT IN STORM HYDRODYNAMICS OF MARINE OBJECTS". In 9th International Conference "Distributed Computing and Grid Technologies in Science and Education". Crossref, 2021. http://dx.doi.org/10.54546/mlit.2021.62.36.001.
Texto completo da fonteZhang, De-Qing, Jun-Feng Du, Zhi-Ming Yuan, Ming Zhang e Feng-Shen Zhu. "Hydrodynamic Modelling of Modularized Floating Photovoltaics Arrays". In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-102530.
Texto completo da fonteRelatórios de organizações sobre o assunto "Emergent hydrodynamics"
Bell, Gary, David Abraham, Nathan Clifton e Lamkin Kenneth. Wabash and Ohio River confluence hydraulic and sediment transport model investigation : a report for US Army Corps of Engineers, Louisville District. Engineer Research and Development Center (U.S.), março de 2022. http://dx.doi.org/10.21079/11681/43441.
Texto completo da fonteGinis, Isaac, Deborah Crowley, Peter Stempel e Amanda Babson. The impact of sea level rise during nor?easters in New England: Acadia National Park, Boston Harbor Islands, Boston National Historical Park, and Cape Cod National Seashore. National Park Service, 2024. http://dx.doi.org/10.36967/2304306.
Texto completo da fonte