Literatura científica selecionada sobre o tema "Embedding de graph"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Embedding de graph".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Embedding de graph"
Liang, Jiongqian, Saket Gurukar e Srinivasan Parthasarathy. "MILE: A Multi-Level Framework for Scalable Graph Embedding". Proceedings of the International AAAI Conference on Web and Social Media 15 (22 de maio de 2021): 361–72. http://dx.doi.org/10.1609/icwsm.v15i1.18067.
Texto completo da fonteDuong, Chi Thang, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen e Karl Aberer. "Scalable robust graph embedding with Spark". Proceedings of the VLDB Endowment 15, n.º 4 (dezembro de 2021): 914–22. http://dx.doi.org/10.14778/3503585.3503599.
Texto completo da fonteZhou, Houquan, Shenghua Liu, Danai Koutra, Huawei Shen e Xueqi Cheng. "A Provable Framework of Learning Graph Embeddings via Summarization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 4 (26 de junho de 2023): 4946–53. http://dx.doi.org/10.1609/aaai.v37i4.25621.
Texto completo da fonteFang, Peng, Arijit Khan, Siqiang Luo, Fang Wang, Dan Feng, Zhenli Li, Wei Yin e Yuchao Cao. "Distributed Graph Embedding with Information-Oriented Random Walks". Proceedings of the VLDB Endowment 16, n.º 7 (março de 2023): 1643–56. http://dx.doi.org/10.14778/3587136.3587140.
Texto completo da fonteMao, Yuqing, e Kin Wah Fung. "Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts". Journal of the American Medical Informatics Association 27, n.º 10 (1 de outubro de 2020): 1538–46. http://dx.doi.org/10.1093/jamia/ocaa136.
Texto completo da fonteMakarov, Ilya, Dmitrii Kiselev, Nikita Nikitinsky e Lovro Subelj. "Survey on graph embeddings and their applications to machine learning problems on graphs". PeerJ Computer Science 7 (4 de fevereiro de 2021): e357. http://dx.doi.org/10.7717/peerj-cs.357.
Texto completo da fonteFRIESEN, TYLER, e VASSILY OLEGOVICH MANTUROV. "EMBEDDINGS OF *-GRAPHS INTO 2-SURFACES". Journal of Knot Theory and Its Ramifications 22, n.º 12 (outubro de 2013): 1341005. http://dx.doi.org/10.1142/s0218216513410058.
Texto completo da fonteMohar, Bojan. "Combinatorial Local Planarity and the Width of Graph Embeddings". Canadian Journal of Mathematics 44, n.º 6 (1 de dezembro de 1992): 1272–88. http://dx.doi.org/10.4153/cjm-1992-076-8.
Texto completo da fonteChen, Mingyang, Wen Zhang, Zhen Yao, Yushan Zhu, Yang Gao, Jeff Z. Pan e Huajun Chen. "Entity-Agnostic Representation Learning for Parameter-Efficient Knowledge Graph Embedding". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 4 (26 de junho de 2023): 4182–90. http://dx.doi.org/10.1609/aaai.v37i4.25535.
Texto completo da fonteXie, Anze, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters, Theodoros Rekatsinas e Shivaram Venkataraman. "Demo of marius". Proceedings of the VLDB Endowment 14, n.º 12 (julho de 2021): 2759–62. http://dx.doi.org/10.14778/3476311.3476338.
Texto completo da fonteTeses / dissertações sobre o assunto "Embedding de graph"
Zhang, Zheng. "Explorations in Word Embeddings : graph-based word embedding learning and cross-lingual contextual word embedding learning". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS369/document.
Texto completo da fonteWord embeddings are a standard component of modern natural language processing architectures. Every time there is a breakthrough in word embedding learning, the vast majority of natural language processing tasks, such as POS-tagging, named entity recognition (NER), question answering, natural language inference, can benefit from it. This work addresses the question of how to improve the quality of monolingual word embeddings learned by prediction-based models and how to map contextual word embeddings generated by pretrained language representation models like ELMo or BERT across different languages.For monolingual word embedding learning, I take into account global, corpus-level information and generate a different noise distribution for negative sampling in word2vec. In this purpose I pre-compute word co-occurrence statistics with corpus2graph, an open-source NLP-application-oriented Python package that I developed: it efficiently generates a word co-occurrence network from a large corpus, and applies to it network algorithms such as random walks. For cross-lingual contextual word embedding mapping, I link contextual word embeddings to word sense embeddings. The improved anchor generation algorithm that I propose also expands the scope of word embedding mapping algorithms from context independent to contextual word embeddings
Ahmed, Algabli Shaima. "Learning the Graph Edit Distance through embedding the graph matching". Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669612.
Texto completo da fonteLos gráficos son estructuras de datos abstractas que se utilizan para modelar problemas reales con dos entidades básicas: nodos y aristas. Cada nodo o vértice representa un punto de interés relevante de un problema, y cada borde representa la relación entre estos puntos. Se podrían atribuir nodos y bordes para aumentar la precisión del modelo, lo que significa que estos atributos podrían variar de vectores de características a etiquetas de descripción. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como visión por computadora, biomédicos y análisis de redes, etc. La primera parte de esta tesis presenta un método general para aprender automáticamente los costos de edición involucrados en la Edición de Gráficos Distancia. El método se basa en incrustar pares de gráficos y su mapeo de nodo a nodo de verdad fundamental en un espacio euclidiano. De esta manera, el algoritmo de aprendizaje no necesita calcular ninguna coincidencia de gráfico tolerante a errores, que es el principal inconveniente de otros métodos debido a su complejidad computacional exponencial intrínseca. Sin embargo, el método de aprendizaje tiene la principal restricción de que los costos de edición deben ser constantes. Luego probamos este método con varias bases de datos de gráficos y también lo aplicamos para realizar el registro de imágenes. En la segunda parte de la tesis, este método se especializa en la verificación de huellas digitales. Las dos diferencias principales con respecto al otro método son que solo definimos los costos de edición de sustitución en los nodos. Por lo tanto, suponemos que los gráficos no tienen aristas. Y también, el método de aprendizaje no se basa en una clasificación lineal sino en una regresión lineal.
Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the model, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, biomedics, and network analysis, and so on .The first part of this thesis presents a general method to automatically learn the edit costs involved in the Graph Edit Distance. The method is based on embedding pairs of graphs and their ground-truth node-tonode mapping into a Euclidean space. In this way, the learning algorithm does not need to compute any Error-Tolerant Graph Matching, which is the main drawback of other methods due to its intrinsic exponential computational complexity. Nevertheless, the learning method has the main restriction that edit costs have to be constant. Then we test this method with several graph databases and also we apply it to perform image registration. In the second part of the thesis, this method is particularized to fingerprint verification. The two main differences with respect to the other method are that we only define the substitution edit costs on the nodes. Thus, we assume graphs do not have edges. And also, the learning method is not based on a linear classification but on a linear regression.
Carroll, Douglas Edmonds. "Embedding parameterized graph classes into normed spaces". Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1324389171&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texto completo da fonteRocha, Mário. "The embedding of complete bipartite graphs onto grids with a minimum grid cutwidth". CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2311.
Texto completo da fonteDube, Matthew P. "An Embedding Graph for 9-Intersection Topological Spatial Relations". Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/DubeMP2009.pdf.
Texto completo da fonteMONDAL, DEBAJYOTI. "Embedding a Planar Graph on a Given Point Set". Springer-Verlag Berlin, 2012. http://hdl.handle.net/1993/8869.
Texto completo da fonteMitropolitsky, Milko. "On the Impact of Graph Embedding on Device Placement". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280435.
Texto completo da fonteModerna neurala nätverk (NN) -modeller kräver mer data och parametrar för att utföra allt mer komplexa uppgifter. När en NN-modell blir för stor för att rymmas på en dator, kan den behöva distribueras över flera datorer. Vilka vil- kor som ska användas vid distributionen av en NN-modell, och mer konkret hur olika delar av modellen ska spridas över olika datorer kallas enhetsplats- problemet. Avhandlingen kommer att fokusera på detta problem. Tidigare till- vägagångssätt har krävt att placeringspolicyn skapas manuellt av människor med expertis i detta område. Eftersom den metoden inte går att skala upp fo- kuserar man på att hantera enhetsplaceringsproblemet genom att automatisera processen med reinforcement learning (RL). De flesta av RL-systemen inne- håller olika typer av grafinbäddningsmoduler.I arbetet försöker vi öka kunskapen om hur man hanterar problem med enhetsplacering genom att mäta och bedöma effekterna av grafinbäddningar på kvaliteten på villkoren för enhetsplacering. Vi jämför de olika metoderna på två sätt: runtime improvement and computation time. Den förstnämnda är ett värde för hur mycket snabbare den nya placeringspolicyn är i jämförelse med en baslinje. Det andra beskriver hur mycket tid som krävs av systemet för att uppnå den förbättrade runtime.Den här avhandlingen bygger på tidigare forskning inom området av enhetsplacering för att undersöka hur olika topp- moderna metoder till enhetsplaceringsprinciper. Grafinbäddningsarkitekturer som vi jämför i avhandlignen är Placeto (används som en baslinje), Graph- SAGE och P-GNN.Vi uppnår en förbättring av runtime med en ökning på 23.967% när vi använder P-GNN jämfört med Placeto och 31.164% ökning från baslinjen. GraphSAGE ger 1.165% bättre resultat än Placeto med samma installation. När det gäller beräkningstiden har GraphSAGE en förbättring på 11.560% jämfört med Placeto, medan P-GNN är 6.950% långsammare än baslinjen.Med resultaten kan vi bekräfta att grafinbäddningsarkitektur kan ha en be- tydande inverkan på enhetsplaceringsprinciper och deras prestanda. Desto mer invecklad grafinbäddningsarkitekturer fångar mer data om grafen och dess to- pologi ger runtime improvment. Däremot blir kan komplexiteten kosta i com- putation time på grund av det tid som krävs för att utbilda placeringssystemet.
Behzadi, Lila. "An improved spring-based graph embedding algorithm and LayoutShow, a Java environment for graph drawing". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq43368.pdf.
Texto completo da fonteTahraoui, Mohammed Amin. "Coloring, packing and embedding of graphs". Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.
Texto completo da fonteOkuno, Akifumi. "Studies on Neural Network-Based Graph Embedding and Its Extensions". Kyoto University, 2020. http://hdl.handle.net/2433/259075.
Texto completo da fonteLivros sobre o assunto "Embedding de graph"
Fu, Yun, e Yunqian Ma, eds. Graph Embedding for Pattern Analysis. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4457-2.
Texto completo da fonteShaw, Blake. Graph Embedding and Nonlinear Dimensionality Reduction. [New York, N.Y.?]: [publisher not identified], 2011.
Encontre o texto completo da fonteGuattery, Stephen. Graph embedding techniques for bounding condition numbers of incomplete factor preconditioners. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Encontre o texto completo da fonteCenter, Langley Research, ed. Graph embedding techniques for bounding condition numbers of incomplete factor preconditioners. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Encontre o texto completo da fonteRiesen, Kaspar. Graph classification and clustering based on vector space embedding. New Jersey: World Scientific, 2010.
Encontre o texto completo da fonteYanpei, Liu. Embeddability in graphs. Beijing, China: Science Press, 1995.
Encontre o texto completo da fonteL, Miller Gary, e Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Encontre o texto completo da fonteL, Miller Gary, e Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Encontre o texto completo da fontePaulheim, Heiko, Petar Ristoski e Jan Portisch. Embedding Knowledge Graphs with RDF2vec. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30387-6.
Texto completo da fonteInstitute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Embedding de graph"
Goyal, Palash. "Graph Embedding". In Machine Learning for Data Science Handbook, 339–51. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24628-9_15.
Texto completo da fonteRokka Chhetri, Sujit, e Mohammad Abdullah Al Faruque. "Dynamic Graph Embedding". In Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis, 209–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37962-9_10.
Texto completo da fonteKrause, Franz, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil, Thomas Hoch, Mario Pichler, Bernhard Heinzl e Bernhard Moser. "Leveraging Semantic Representations via Knowledge Graph Embeddings". In Artificial Intelligence in Manufacturing, 71–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46452-2_5.
Texto completo da fonteEstrella-Balderrama, Alejandro, J. Joseph Fowler e Stephen G. Kobourov. "Graph Simultaneous Embedding Tool, GraphSET". In Graph Drawing, 169–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_17.
Texto completo da fonteAuer, Christopher, Christian Bachmaier, Franz Josef Brandenburg e Andreas Gleißner. "Classification of Planar Upward Embedding". In Graph Drawing, 415–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_39.
Texto completo da fonteJouili, Salim, e Salvatore Tabbone. "Graph Embedding Using Constant Shift Embedding". In Recognizing Patterns in Signals, Speech, Images and Videos, 83–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17711-8_9.
Texto completo da fonteHarel, David, e Yehuda Koren. "Graph Drawing by High-Dimensional Embedding". In Graph Drawing, 207–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36151-0_20.
Texto completo da fonteKatz, Bastian, Marcus Krug, Ignaz Rutter e Alexander Wolff. "Manhattan-Geodesic Embedding of Planar Graphs". In Graph Drawing, 207–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0_21.
Texto completo da fonteDi Giacomo, Emilio, Fabrizio Frati, Radoslav Fulek, Luca Grilli e Marcus Krug. "Orthogeodesic Point-Set Embedding of Trees". In Graph Drawing, 52–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_6.
Texto completo da fonteDornheim, Christoph. "Graph Embedding with Topological Cycle-Constraints". In Graph Drawing, 155–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46648-7_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Embedding de graph"
Giri, Pulak Ranjan, Mori Kurokawa e Kazuhiro Saito. "Fast Variational Knowledge Graph Embedding". In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 386–87. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.10318.
Texto completo da fonteBai, Yunsheng, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun e Wei Wang. "Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/275.
Texto completo da fonteLuo, Gongxu, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu e Lifang He. "Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/381.
Texto completo da fontePan, Shirui, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao e Chengqi Zhang. "Adversarially Regularized Graph Autoencoder for Graph Embedding". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/362.
Texto completo da fonteRahman, Tahleen, Bartlomiej Surma, Michael Backes e Yang Zhang. "Fairwalk: Towards Fair Graph Embedding". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/456.
Texto completo da fonteSun, Zequn, Wei Hu, Qingheng Zhang e Yuzhong Qu. "Bootstrapping Entity Alignment with Knowledge Graph Embedding". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/611.
Texto completo da fonteWan, Hai, Yonghao Luo, Bo Peng e Wei-Shi Zheng. "Representation Learning for Scene Graph Completion via Jointly Structural and Visual Embedding". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/132.
Texto completo da fonteSinger, Uriel, Ido Guy e Kira Radinsky. "Node Embedding over Temporal Graphs". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/640.
Texto completo da fonteZhang, Hengtong, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li e Kui Ren. "Data Poisoning Attack against Knowledge Graph Embedding". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/674.
Texto completo da fonteZhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang e Yilun Jin. "DANE: Domain Adaptive Network Embedding". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/606.
Texto completo da fonte