Artigos de revistas sobre o tema "Embedded fiber model"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Embedded fiber model".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gu, X., e R. J. Young. "Deformation Micromechanics in Model Carbon Fiber Reinforced Composites Part II: The Microbond Test". Textile Research Journal 67, n.º 2 (fevereiro de 1997): 93–100. http://dx.doi.org/10.1177/004051759706700204.
Texto completo da fonteHer, Shiuh Chuan, e Bo Ren Yao. "Stress Analysis of Composite Material Embedded with Optical Fiber Sensor Subjected to In-Plane Shear". Advanced Materials Research 139-141 (outubro de 2010): 137–40. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.137.
Texto completo da fonteHo, Ha Vinh, Eunsoo Choi e Jun Won Kang. "Analytical bond behavior of cold drawn SMA crimped fibers considering embedded length and fiber wave depth". REVIEWS ON ADVANCED MATERIALS SCIENCE 60, n.º 1 (1 de janeiro de 2021): 862–83. http://dx.doi.org/10.1515/rams-2021-0066.
Texto completo da fonteChung, Ilsup, e Y. Jack Weitsman. "Model for the Micro-Buckling/Micro-Kinking Compressive Response of Fiber-Reinforced Composites". Applied Mechanics Reviews 47, n.º 6S (1 de junho de 1994): S256—S261. http://dx.doi.org/10.1115/1.3124419.
Texto completo da fonteLiang, Xiaodong, Kai Li e Shengqiang Cai. "Drying-Induced Deformation in Fiber-Embedded Gels to Mimic Plant Nastic Movements". International Journal of Applied Mechanics 07, n.º 02 (abril de 2015): 1550016. http://dx.doi.org/10.1142/s1758825115500167.
Texto completo da fonteGao, Jian Hong, e Xiao Xiang Yang. "Evaluation of 3D Embedded Element Technique in the Finite Element Analysis for the Composite". Key Engineering Materials 801 (maio de 2019): 65–70. http://dx.doi.org/10.4028/www.scientific.net/kem.801.65.
Texto completo da fonteWren, T. A. L., e D. R. Carter. "A Microstructural Model for the Tensile Constitutive and Failure Behavior of Soft Skeletal Connective Tissues". Journal of Biomechanical Engineering 120, n.º 1 (1 de fevereiro de 1998): 55–61. http://dx.doi.org/10.1115/1.2834307.
Texto completo da fonteGao, Jian Hong, Xiao Xiang Yang e Li Hong Huang. "Application of Embedded Element in the Short Fiber Reinforced Composite". Key Engineering Materials 774 (agosto de 2018): 241–46. http://dx.doi.org/10.4028/www.scientific.net/kem.774.241.
Texto completo da fonteHuang, Yizhe, Zhifu Zhang, Chaopeng Li, Kuanmin Mao e Qibai Huang. "Modal Performance of Two-Fiber Orthogonal Gradient Composite Laminates Embedded with SMA". Materials 13, n.º 5 (2 de março de 2020): 1102. http://dx.doi.org/10.3390/ma13051102.
Texto completo da fonteZulkarnain, Muhammad, Zaimi Zainal Mukhtar e Ikhwan Yusof. "Effect of Steel Fiber Reinforced in FRP Confined Concrete by Using Numerical Analysis". Key Engineering Materials 879 (março de 2021): 202–12. http://dx.doi.org/10.4028/www.scientific.net/kem.879.202.
Texto completo da fonteCong, Ding, Guo Liping, Ren Jinming, Wang Yongming, Li Xinyu, Gao Yuan, Liu Wanpeng e Li Ruize. "A Modified Fiber Bridging Model for High Ductility Cementitious Composites Based on Debonding-Slipping Rupture Analysis". Advances in Materials Science and Engineering 2022 (24 de maio de 2022): 1–16. http://dx.doi.org/10.1155/2022/1461318.
Texto completo da fonteVarna, Janis, Lin Qi Zhuang, Andrejs Pupurs e Zoubir Ayadi. "Growth and Interaction of Debonds in Local Clusters of Fibers in Unidirectional Composites during Transverse Loading". Key Engineering Materials 754 (setembro de 2017): 63–66. http://dx.doi.org/10.4028/www.scientific.net/kem.754.63.
Texto completo da fonteAkbari Baghal, Amir Ebrahim, Ahmad Maleki e Ramin Vafaei. "On the Pull-out Behavior of Hooked-End Shape Memory Alloys Fibers Embedded in Ultra-High Performance Concrete". International Journal of Engineering and Technology Innovation 11, n.º 4 (23 de julho de 2021): 265–77. http://dx.doi.org/10.46604/ijeti.2021.7060.
Texto completo da fonteYi, Duo, Min Zhang, Lijuan Gu, Jianming Yang e Wenhui Yu. "Finite element analysis of fiber optic embedded in thermal spray coating". Journal of Intelligent Material Systems and Structures 29, n.º 5 (22 de julho de 2017): 896–904. http://dx.doi.org/10.1177/1045389x17721057.
Texto completo da fonteZhou, Chunhua, Changhao Chen, Zilong Ye, Qi Wu e Ke Xiong. "Multi-Directional Strain Measurement in Fiber-Reinforced Plastic Based on Birefringence of Embedded Fiber Bragg Grating". Sensors 24, n.º 19 (24 de setembro de 2024): 6190. http://dx.doi.org/10.3390/s24196190.
Texto completo da fontePrabhugoud, Mohanraj, e Kara Peters. "Finite element model for embedded fiber Bragg grating sensor". Smart Materials and Structures 15, n.º 2 (23 de fevereiro de 2006): 550–62. http://dx.doi.org/10.1088/0964-1726/15/2/038.
Texto completo da fonteMatveenko, V. P., e G. S. Serovaev. "Numerical Investigation of Stress-Strain State Effects on Strain Measurements with Fiber Bragg Grating Sensors". Journal of Physics: Conference Series 2701, n.º 1 (1 de fevereiro de 2024): 012079. http://dx.doi.org/10.1088/1742-6596/2701/1/012079.
Texto completo da fonteChegini, Salman, e Stephen J. Ferguson. "THE ROLE OF COLLAGEN FIBERS IN CARTILAGE MECHANICS: A FIBER-EMBEDDED, POROVISCOELASTIC MODEL". Journal of Biomechanics 41 (julho de 2008): S174. http://dx.doi.org/10.1016/s0021-9290(08)70174-x.
Texto completo da fonteSCHLANGEN, ERIK, e ZHIWEI QIAN. "3D MODELING OF FRACTURE IN CEMENT-BASED MATERIALS". Journal of Multiscale Modelling 01, n.º 02 (abril de 2009): 245–61. http://dx.doi.org/10.1142/s1756973709000116.
Texto completo da fontePise, Mangesh, Dominik Brands e Jörg Schröder. "Development and Calibration of a Phenomenological Material Model for Steel-Fiber-Reinforced High-Performance Concrete Based on Unit Cell Calculations". Materials 17, n.º 10 (10 de maio de 2024): 2247. http://dx.doi.org/10.3390/ma17102247.
Texto completo da fonteHer, Shiuh Chuan, e Chang Yu Tsai. "Strain Analysis of an Embedded Optical Fiber Sensor". Key Engineering Materials 467-469 (fevereiro de 2011): 279–82. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.279.
Texto completo da fonteTamin, M. N., e H. Ghonem. "Fatigue Damage Mechanisms of Bridging Fibers in Titanium Metal Matrix Composites1". Journal of Engineering Materials and Technology 122, n.º 4 (4 de maio de 2000): 370–75. http://dx.doi.org/10.1115/1.1288770.
Texto completo da fonteLindner, Markus, Andrea Stadler, Georg Hamann, Bennet Fischer, Martin Jakobi, Florian Heilmeier, Constantin Bauer, Wolfram Volk, Alexander W. Koch e Johannes Roths. "Fiber Bragg Sensors Embedded in Cast Aluminum Parts: Axial Strain and Temperature Response". Sensors 21, n.º 5 (1 de março de 2021): 1680. http://dx.doi.org/10.3390/s21051680.
Texto completo da fonteKalaitzidou, Chrysovalantou, Georgios Grekas, Andreas Zilian, Charalambos Makridakis e Phoebus Rosakis. "Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions". PLOS Computational Biology 20, n.º 7 (1 de julho de 2024): e1012238. http://dx.doi.org/10.1371/journal.pcbi.1012238.
Texto completo da fonteZheng, Guan-Yu. "Numerical Investigation of Characteristic of Anisotropic Thermal Conductivity of Natural Fiber Bundle with Numbered Lumens". Mathematical Problems in Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/506818.
Texto completo da fonteWei, Jiakai, Wuxiang Zhang e Xilun Ding. "Design and Finite Element Analysis of Artificial Braided Meniscus Model". Materials 16, n.º 13 (1 de julho de 2023): 4775. http://dx.doi.org/10.3390/ma16134775.
Texto completo da fonteZhang, Yunqian, Lilong Luo, Guofan Zhang, Liang Chang e Xiaohua Nie. "Tension Performance Prediction and Experiment of Optical Smart Composites Using Micromechanical Failure Theory". Journal of Physics: Conference Series 2891, n.º 13 (1 de dezembro de 2024): 132013. https://doi.org/10.1088/1742-6596/2891/13/132013.
Texto completo da fonteHuzni, Syifaul, Ikramullah Ikramullah, Israr B. M. Ibrahim, Syarizal Fonna, Teuku Arriessa Sukhairi, Andri Afrizal, Umar Muksin, Abdul Khalil H. P. S., Sri Aprilia e Samsul Rizal. "The Role of Typha angustifilia Fiber–Matrix Bonding Parameters on Interfacial Shear Strength Analysis". Polymers 14, n.º 5 (2 de março de 2022): 1006. http://dx.doi.org/10.3390/polym14051006.
Texto completo da fonteZhu, Da Sheng, e Bo Qin Gu. "Micromechanical Analysis of Single-Fiber Pull-Out Test of Fiber-Reinforced Viscoelastic Matrix Composites". Advanced Materials Research 399-401 (novembro de 2011): 556–60. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.556.
Texto completo da fonteFedotov, M. Yu. "THEORETICAL RESEARCHES OF THE EMBEDDED FIBER-OPTIC SYSTEM OF TESTING DEFORMATION AND TEMPERATURE OF POLYMER COMPOSITES". Kontrol'. Diagnostika, n.º 299 (maio de 2023): 14–25. http://dx.doi.org/10.14489/td.2023.05.pp.014-025.
Texto completo da fonteChanda, Arnab, Subhodip Chatterjee e Vivek Gupta. "Soft composite based hyperelastic model for anisotropic tissue characterization". Journal of Composite Materials 54, n.º 28 (23 de junho de 2020): 4525–34. http://dx.doi.org/10.1177/0021998320935560.
Texto completo da fonteSelvadurai, A. P. S., e A. ten Busschen. "Mechanics of the Segmentation of an Embedded Fiber, Part II: Computational Modeling and Comparisons". Journal of Applied Mechanics 62, n.º 1 (1 de março de 1995): 98–107. http://dx.doi.org/10.1115/1.2895889.
Texto completo da fonteWu, Jing, e Ai Qin Xu. "A Resistance Model of Carbon Fiber Composite Materials Based on Interfacial Effect". Applied Mechanics and Materials 496-500 (janeiro de 2014): 2379–82. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.2379.
Texto completo da fonteChilders, Carey F. "Mathematical Model of the Effective Properties of a Fiber Reinforced Composite with a Linearly Graded Transition Zone". Tire Science and Technology 38, n.º 4 (1 de dezembro de 2010): 286–307. http://dx.doi.org/10.2346/1.3519536.
Texto completo da fonteBondarev, B. A., N. N. Chernousov, R. N. Chernousov e V. A. Sturova. "EXPERIMENTAL STUDY OF THE NATURE OF INTERACTION OF STEEL FIBRES EQUIDIRECTIONALLY LOCATED IN PARALLEL TO FORCE IN FINE-GRAINED SLAG CONCRETE". Proceedings of the Southwest State University 21, n.º 2 (28 de abril de 2017): 72–82. http://dx.doi.org/10.21869/2223-1560-2017-21-2-72-82.
Texto completo da fonteQiao, Yan, Chuan Zhi Sun e Biao Zhang. "Research on Strain Transfer of Embedded BOTDA Sensors Analyzed by FEM". Applied Mechanics and Materials 357-360 (agosto de 2013): 1473–79. http://dx.doi.org/10.4028/www.scientific.net/amm.357-360.1473.
Texto completo da fonteHerranen, Hendrik, Jaan Kers, Jürgo S. Preden, Robert Talalaev, Martin Eerme, Jüri Majak, Henri Lend e Georg Allikas. "Embedded Electronics Influence on the Strength of Carbon Fiber Laminate". Advanced Materials Research 905 (abril de 2014): 239–43. http://dx.doi.org/10.4028/www.scientific.net/amr.905.239.
Texto completo da fonteTur, Bogac, Lucia Gühring, Olaf Wendler e Stefan Kniesburges. "Influence of airflow and ligament tension on the acoustics of a biomimetic larynx model". Journal of the Acoustical Society of America 155, n.º 3_Supplement (1 de março de 2024): A340. http://dx.doi.org/10.1121/10.0027748.
Texto completo da fonteMurgo, Francesco Saverio, Francesca Ferretti e Claudio Mazzotti. "A discrete-cracking numerical model for the in-plane behavior of FRCM strengthened masonry panels". Bulletin of Earthquake Engineering 19, n.º 11 (28 de maio de 2021): 4471–502. http://dx.doi.org/10.1007/s10518-021-01129-6.
Texto completo da fonteChen, Bin, Da Gang Yin, Quan Yuan, Ji Luo e Jing Hong Fan. "Microstructural Model of Enveloping-Core Fiber Distribution of Conifer Wood and Research on Biomimetic Wood Composite". Materials Science Forum 686 (junho de 2011): 406–10. http://dx.doi.org/10.4028/www.scientific.net/msf.686.406.
Texto completo da fonteKumar, R. Krishna, e J. N. Reddy. "Stress Distributions During Fiber Pull-Out". Journal of Applied Mechanics 63, n.º 2 (1 de junho de 1996): 301–6. http://dx.doi.org/10.1115/1.2788864.
Texto completo da fonteChanda, Arnab, e Christian Callaway. "Tissue Anisotropy Modeling Using Soft Composite Materials". Applied Bionics and Biomechanics 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/4838157.
Texto completo da fonteLebel-Cormier, Marie-Anne, Tommy Boilard, Martin Bernier e Luc Beaulieu. "Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings". Sensors 21, n.º 23 (6 de dezembro de 2021): 8139. http://dx.doi.org/10.3390/s21238139.
Texto completo da fonteHsueh, C. H., R. J. Young, X. Yang e P. F. Becher. "Stress transfer in a model composite containing a single embedded fiber". Acta Materialia 45, n.º 4 (abril de 1997): 1469–76. http://dx.doi.org/10.1016/s1359-6454(96)00262-5.
Texto completo da fonteSirkis, James S., e Henry W. Haslach. "Complete Phase-Strain Model for Structurally Embedded Interferometric Optical Fiber Sensors". Journal of Intelligent Material Systems and Structures 2, n.º 1 (janeiro de 1991): 3–24. http://dx.doi.org/10.1177/1045389x9100200101.
Texto completo da fonteXie, Xinyu, Jiantao Bai e Wenjie Zuo. "Topology optimization of fiber-reinforced concrete structures using membrane-embedded model". Engineering Structures 314 (setembro de 2024): 118299. http://dx.doi.org/10.1016/j.engstruct.2024.118299.
Texto completo da fonteZhang, Xuan, Hong Lei Jiang e Xiao Bing Man. "Preparation of Catalytic Paper Using Fe-Pillared Bentonite as Filler by a Paper-Making Technique". Advanced Materials Research 955-959 (junho de 2014): 127–30. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.127.
Texto completo da fonteCusano, A., P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi e M. Caponero. "Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors". IEEE Sensors Journal 6, n.º 1 (fevereiro de 2006): 67–77. http://dx.doi.org/10.1109/jsen.2005.854152.
Texto completo da fonteYi, Duo. "Development of a flame spraying coating–based fiber composite structure: A thermo-mechanical finite element study". Journal of Intelligent Material Systems and Structures 31, n.º 16 (21 de julho de 2020): 1950–58. http://dx.doi.org/10.1177/1045389x20942324.
Texto completo da fonteSunny, John, Hadi Nazaripoor, Jorge Palacios Moreno e Pierre Mertiny. "Accelerated Zero-Stress Hydrothermal Aging of Dry E-Glass Fibers and Service Life Prediction Using Arrhenius Model". Fibers 11, n.º 8 (15 de agosto de 2023): 70. http://dx.doi.org/10.3390/fib11080070.
Texto completo da fonte