Artigos de revistas sobre o tema "Electronics front-end"

Siga este link para ver outros tipos de publicações sobre o tema: Electronics front-end.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electronics front-end".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Salomon, F., P. Edelbruck, G. Brulin, A. Boiano, G. Tortone, A. Ordine, M. Bini, S. Barlini e S. Valdré. "FAZIA front-end electronics". EPJ Web of Conferences 88 (2015): 01015. http://dx.doi.org/10.1051/epjconf/20158801015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hall, G. "LHC front-end electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, n.º 1-2 (outubro de 2000): 353–64. http://dx.doi.org/10.1016/s0168-9002(00)00657-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Luengo, S., D. Gascón, A. Comerma, L. Garrido, J. Riera, S. Tortella e X. Vilasís. "SPD very front end electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 567, n.º 1 (novembro de 2006): 310–14. http://dx.doi.org/10.1016/j.nima.2006.05.112.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Antonelli, A., G. Corradi, M. Moulson, C. Paglia, M. Raggi, T. Spadaro, D. Tagnani et al. "The NA62 LAV front-end electronics". Journal of Instrumentation 7, n.º 01 (26 de janeiro de 2012): C01097. http://dx.doi.org/10.1088/1748-0221/7/01/c01097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase et al. "BaBar DIRC electronics front-end chain". IEEE Transactions on Nuclear Science 45, n.º 4 (1998): 1898–906. http://dx.doi.org/10.1109/23.710959.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Cardarelli, R., G. Aielli, P. Camarri, A. Di Ciaccio, L. Di Stante, B. Liberti, E. Pastori, R. Santonico e A. Zerbini. "RPC performance vs. front-end electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 661 (janeiro de 2012): S198—S200. http://dx.doi.org/10.1016/j.nima.2010.09.136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Manfredi, P. F., e M. Manghisoni. "Front-end electronics for pixel sensors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 465, n.º 1 (junho de 2001): 140–47. http://dx.doi.org/10.1016/s0168-9002(01)00374-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

De Geronimo, G., P. O'Connor, V. Radeka e B. Yu. "Front-end electronics for imaging detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, n.º 1-2 (setembro de 2001): 192–99. http://dx.doi.org/10.1016/s0168-9002(01)00963-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Weilhammer, Peter. "Front-end electronics for RICH detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, n.º 1-2 (agosto de 1999): 413–25. http://dx.doi.org/10.1016/s0168-9002(99)00541-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Artuso, Marina. "The BTeV RICH front end electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 553, n.º 1-2 (novembro de 2005): 130–34. http://dx.doi.org/10.1016/j.nima.2005.08.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

FARTHOUAT, PHILIPPE. "ATLAS ELECTRONICS: AN OVERVIEW". International Journal of Modern Physics A 25, n.º 09 (10 de abril de 2010): 1761–84. http://dx.doi.org/10.1142/s0217751x10049335.

Texto completo da fonte
Resumo:
The readout electronics development of ATLAS has been driven by the large number of channels of the different subdetectors and by particular environment constraints. This paper gives an overview of the developments made for the front-end electronics, the front-end links, the back-end electronics and the power distribution. It also shows how common issues across the experiment have been handled.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Shchablo, K., A. Samalan, M. Tytgat, N. Zaganidis, G. A. Alves, F. Marujo, F. Torres Da Silva De Araujo et al. "Front-end electronics for CMS iRPC detectors". Journal of Instrumentation 16, n.º 05 (1 de maio de 2021): C05002. http://dx.doi.org/10.1088/1748-0221/16/05/c05002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Shitenkov, M., D. Dementev, A. Voronin, I. Kovalev, I. Kudryashov, A. Kurganov e Yu Murin. "Front-End Electronics for BM@N STS". Physics of Particles and Nuclei 52, n.º 4 (julho de 2021): 826–29. http://dx.doi.org/10.1134/s1063779621040559.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Buchanan, N. J., L. Chen, D. M. Gingrich, S. Liu, H. Chen, D. Damazio, F. Densing et al. "ATLAS liquid argon calorimeter front end electronics". Journal of Instrumentation 3, n.º 09 (22 de setembro de 2008): P09003. http://dx.doi.org/10.1088/1748-0221/3/09/p09003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Raut, Anil N., Vilas Bhalerao e A. Praveen Kumar. "Front-end electronics for the upgraded GMRT". IOP Conference Series: Materials Science and Engineering 44 (23 de abril de 2013): 012025. http://dx.doi.org/10.1088/1757-899x/44/1/012025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Salomon, F., P. Edelbruck, G. Brulin, B. Borderie, A. Richard, M. F. Rivet, G. Verde et al. "Front-end electronics for the FAZIA experiment". Journal of Instrumentation 11, n.º 01 (26 de janeiro de 2016): C01064. http://dx.doi.org/10.1088/1748-0221/11/01/c01064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Antilogus, P., D. Aston, T. Bienz, F. Bird, S. Dasu, W. Dunwoodie, G. Hallewell et al. "Cherenkov Ring Imaging Detector front-end electronics". IEEE Transactions on Nuclear Science 38, n.º 2 (abril de 1991): 408–16. http://dx.doi.org/10.1109/23.289334.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Klein, S. R., P. Barale, E. Beuville, F. Bieser, K. Dao, S. Kleinfelder, V. Lindenstruth et al. "Front end electronics for the STAR TPC". IEEE Transactions on Nuclear Science 43, n.º 3 (junho de 1996): 1768–72. http://dx.doi.org/10.1109/23.507219.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Aielli, G., P. Camarri, R. Cardarelli, A. Di Ciaccio, L. Di Stante, B. Liberti, A. Paoloni, E. Pastori e R. Santonico. "Test of ATLAS RPCs Front-End electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508, n.º 1-2 (agosto de 2003): 189–93. http://dx.doi.org/10.1016/s0168-9002(03)01349-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Wang, Yaping, Ke Ma, Hans Muller, Xu Cai, Daicui Zhou, Zhongbao Yin, Terry C. Awes e Dong Wang. "Front-end electronics for the ALICE calorimeters". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 617, n.º 1-3 (maio de 2010): 369–71. http://dx.doi.org/10.1016/j.nima.2009.09.022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Arfelli, F., V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, P. Cristaudo, M. Di Michiel et al. "SYRMEP front-end and read-out electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, n.º 1-3 (maio de 1998): 351–53. http://dx.doi.org/10.1016/s0168-9002(97)01297-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Lutz, G., W. Buttler, H. Bergmann, P. Holl, B. J. Hosticka, P. F. Manfredi e G. Zimmer. "Low noise monolithic CMOS front end electronics". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 263, n.º 1 (janeiro de 1988): 163–73. http://dx.doi.org/10.1016/0168-9002(88)91030-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Drake, G., T. F. Droege, C. A. Nelson, S. L. Segler, W. Stuermer, K. J. Turner e S. Kuhlmann. "CDF front end electronics: The rabbit system". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 269, n.º 1 (junho de 1988): 68–81. http://dx.doi.org/10.1016/0168-9002(88)90863-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cundiff, T., J. W. Dawson, L. Dalmonte, G. Drake, T. Fitzpatrick, W. Haberichter, D. Huffman et al. "The MINOS near detector front end electronics". IEEE Transactions on Nuclear Science 53, n.º 3 (junho de 2006): 1347–55. http://dx.doi.org/10.1109/tns.2006.876771.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Barbosa, Joao, Federico Alessio, Luis Cardoso, Clara Gaspar e Paolo Durante. "Front-End Electronics Control and Monitoring for the LHCb Upgrade". EPJ Web of Conferences 214 (2019): 01002. http://dx.doi.org/10.1051/epjconf/201921401002.

Texto completo da fonte
Resumo:
The LHCb experiment, one of the four operating in the LHC, will be enduring a major upgrade of its electronics during the third long shutdown period of the particle accelerator. One of the main objectives of the upgrade effort is to implement a 40MHz readout of collision data. For this purpose, the Front-End electronics will make extensive use of a radiation resistant chipset, the Gigabit Transceiver (GBT), for readout as well as for slow control, monitoring and synchronization. At LHCb, the tools to operate the front-end electronics are developed by a central team and distributed to the users. This contribution describes the architecture of the system that implements the slow control and monitoring of all Front-End electronics using the GBT chipset, namely the GBTx and GBT-SCA. The system is implemented in 3 layers starting with an FPGA based electronic board that interfaces the GBT chipset directly through optical fibers. The second layer is composed by a PCIe driver and a number of processes to operate these boards. The user operates the system in the third layer which is the WinCC OA SCADA that is interfaced with the Front-Ends via a message broker called DIM. The requirements of the system as well as the design and integration of each layer are discussed in detail. The results of the firmware implementation in hardware and operational tests are shown and the overall performance of the system is discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Abgrall, N., M. Amman, I. J. Arnquist, F. T. Avignone, A. S. Barabash, C. J. Barton, P. J. Barton et al. "The Majorana Demonstrator readout electronics system". Journal of Instrumentation 17, n.º 05 (1 de maio de 2022): T05003. http://dx.doi.org/10.1088/1748-0221/17/05/t05003.

Texto completo da fonte
Resumo:
Abstract The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Sanjuán, J., A. Lobo, M. Nofrarias, J. Ramos-Castro e P. J. Riu. "Thermal diagnostics front-end electronics for LISA Pathfinder". Review of Scientific Instruments 78, n.º 10 (outubro de 2007): 104904. http://dx.doi.org/10.1063/1.2800776.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Penny, R. D., D. K. Lathrop, B. D. Thorson, B. R. Whitecotton, R. H. Koch e J. R. Rosen. "Wideband front end for high-frequency SQUID electronics". IEEE Transactions on Appiled Superconductivity 7, n.º 2 (junho de 1997): 2323–26. http://dx.doi.org/10.1109/77.621704.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Antonelli, A., G. Corradi, F. Gonnella, M. Moulson, C. Paglia, M. Raggi, T. Spadaro et al. "Performance of the NA62 LAV front-end electronics". Journal of Instrumentation 8, n.º 01 (15 de janeiro de 2013): C01020. http://dx.doi.org/10.1088/1748-0221/8/01/c01020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase et al. "The DIRC front-end electronics chain for BaBar". IEEE Transactions on Nuclear Science 47, n.º 6 (2000): 2106–13. http://dx.doi.org/10.1109/23.903856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Drake, G., D. Frei, S. R. Hahn, C. A. Nelson, S. L. Segler e W. Stuermer. "The upgraded CDF front end electronics for calorimetry". IEEE Transactions on Nuclear Science 39, n.º 5 (1992): 1281–85. http://dx.doi.org/10.1109/23.173191.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Anderson, B. E., K. Anderson, A. Charalambous, A. Cotta-Ramusino, M. Dallavalle, H. Evans, A. Eyring et al. "The OPAL silicon-tungsten calorimeter front end electronics". IEEE Transactions on Nuclear Science 41, n.º 4 (1994): 845–52. http://dx.doi.org/10.1109/23.322818.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Hall, G. "Front end electronics for silicon tracking at LHC". IEEE Transactions on Nuclear Science 41, n.º 4 (1994): 1086–90. http://dx.doi.org/10.1109/23.322863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lo, C. C., S. Olson e J. Bistirlich. "Front end electronics for the Jet Drift Chamber". IEEE Transactions on Nuclear Science 36, n.º 1 (1989): 462–64. http://dx.doi.org/10.1109/23.34483.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chen, H., G. De Geronimo, F. Lanni, D. Lissauer, D. Makowiecki, V. Radeka, S. Rescia, C. Thorn e B. Yu. "Front End Readout Electronics of the MicroBooNE Experiment". Physics Procedia 37 (2012): 1287–94. http://dx.doi.org/10.1016/j.phpro.2012.02.471.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sakaguchi, T., Y. Akiba, K. Ebisu, S. Frank, H. Hamagaki, H. Hara, R. S. Hayano et al. "Development of front end electronics for PHENIX RICH". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, n.º 1-2 (outubro de 2000): 382–85. http://dx.doi.org/10.1016/s0168-9002(00)00661-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Yin, Zhongbao, Hans Muller, Rui Pimenta, Dieter Röhrich, Iouri Sibiriak, Bernhard Skaali, Dong Wang, Yaping Wang e Daicui Zhou. "Front-end electronics of the ALICE photon spectrometer". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623, n.º 1 (novembro de 2010): 472–74. http://dx.doi.org/10.1016/j.nima.2010.03.040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Baur, R., P. Ernst, G. Gramegna e M. Richter. "Front-end electronics for the CERES TPC-detector". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, n.º 1-3 (maio de 1998): 278–85. http://dx.doi.org/10.1016/s0168-9002(97)01280-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bailly, P., J. Chauveau, L. Del Buono, J. F. Genat, H. Lebbolo, L. Roos, B. Zhang et al. "The DIRC front-end electronics chain for BaBar". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, n.º 1-2 (agosto de 1999): 450–55. http://dx.doi.org/10.1016/s0168-9002(99)00461-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Sauerzopf, Clemens, Lukas Gruber, Ken Suzuki, Johann Zmeskal e Eberhard Widmann. "Intelligent Front-end Electronics for Silicon photodetectors (IFES)". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 819 (maio de 2016): 163–66. http://dx.doi.org/10.1016/j.nima.2016.02.098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Garozzo, S., D. Marano, G. Bonanno, A. Grillo, G. Romeo, M. C. Timpanaro, D. Lo Presti et al. "Front-end electronics for the Muon Portal project". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 833 (outubro de 2016): 169–80. http://dx.doi.org/10.1016/j.nima.2016.07.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Phogat, Aman, Ankit Gaur, Moh Rafik, Ashok Kumar e Md Naimuddin. "New front-end electronics for INO-ICAL experiment". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 905 (outubro de 2018): 193–98. http://dx.doi.org/10.1016/j.nima.2018.07.070.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Badura, E., R. Seifert, A. H. Walenta e H. Z. Xu. "Front-end electronics for the ZEUS vertex detector". Nuclear Physics B - Proceedings Supplements 23, n.º 1 (julho de 1991): 239–46. http://dx.doi.org/10.1016/0920-5632(91)90054-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Amoroso, A., M. Colantoni, O. Denisov, A. Ferrero, V. Frolov, A. Grasso, A. Korentchenko et al. "The front-end electronics for the COMPASS MWPCs". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 518, n.º 1-2 (fevereiro de 2004): 495–97. http://dx.doi.org/10.1016/j.nima.2003.11.067.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Beneyton, R., C. Gaspar, B. Jost e S. Schmeling. "Controlling front-end electronics boards using commercial solutions". IEEE Transactions on Nuclear Science 49, n.º 2 (abril de 2002): 474–77. http://dx.doi.org/10.1109/tns.2002.1003779.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Barish, K., W. C. Chang, O. Dietzsch, T. Ferdousi, A. Franz, J. Fried, S. Y. Fung et al. "Front-end electronics for PHENIX time expansion chamber". IEEE Transactions on Nuclear Science 49, n.º 3 (junho de 2002): 1141–46. http://dx.doi.org/10.1109/tns.2002.1039627.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Capra, S., G. Secci, B. Million, L. Manara, S. Coelli, M. Citterio, D. De Salvador et al. "N3G project: front-end electronics and mechanical advances". Journal of Instrumentation 19, n.º 01 (1 de janeiro de 2024): C01011. http://dx.doi.org/10.1088/1748-0221/19/01/c01011.

Texto completo da fonte
Resumo:
Abstract The higher counting-rate and radiation hardness required by modern gamma spectroscopy experiments highlight the need for a new generation of High-Purity Germanium detectors based on electrons-collecting electrodes. To achieve this goal, new doping technologies are required. The one studied by the N3G (Next Generation Germanium Gamma detectors) project is the Pulsed Laser Melting. Besides the development of innovative segmented High-Purity Germanium crystals, the project is also aimed at developing a detector case complete of contact structures and front-end electronics. A specific integrated circuit pre-amplifier is being designed: a first version was tested at room temperature, using a pulser as pre-amplifier input. A resolution of 1.08 keV with 15 pF input capacitance, reproducing the one of a detector single segment, was obtained with 6 µs shaping time.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Axani, S. N., S. Futagi, M. Garcia, C. Grant, K. Hosokawa, S. Ieki, K. Inoue et al. "RFSoC-based front-end electronics for pulse detection". Journal of Instrumentation 19, n.º 03 (1 de março de 2024): P03013. http://dx.doi.org/10.1088/1748-0221/19/03/p03013.

Texto completo da fonte
Resumo:
Abstract Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1–125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 μVrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND).
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Farnese, Christian. "The new front end and DAQ of the ICARUS detector". EPJ Web of Conferences 182 (2018): 03003. http://dx.doi.org/10.1051/epjconf/201818203003.

Texto completo da fonte
Resumo:
ICARUS is the largest imaging LAr TPC ever operated. During its LNGS run on the CNGS neutrino beam, from 2010 to 2013, produced some thousands neutrino events of unprecedented quality. This was possible thanks its mechanical precision and stability, liquid argon purity and electronics front-end and DAQ. Actually ICARUS T600, in view of its operation at FNAL on the SBN neutrino beam, is undergoing a major overhauling that implies cathode mechanics improvement, additional PMTs installation and a new electronics front-end and DAQ. This electronics implements a new architecture, integrated onto the flange proprietary design, and a new front-end that improves S/N and induction signals treatment. This issue will be presented in detail together with data recently recorder at CERN in the FLIC, 50 litres, LAr facility.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Flatscher, M., M. Neumayer e T. Bretterklieber. "Holistic analysis for electrical capacitance tomography front-end electronics". Journal of Physics: Conference Series 1065 (agosto de 2018): 092008. http://dx.doi.org/10.1088/1742-6596/1065/9/092008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia