Literatura científica selecionada sobre o tema "Electromagnetism – materials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Electromagnetism – materials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Electromagnetism – materials"
Xiong, Guang Jie, e Ling Li. "Finite Element Analysis of Electromagnetic Device in Magnetorheological Fluid Brake". Applied Mechanics and Materials 268-270 (dezembro de 2012): 1448–52. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1448.
Texto completo da fonteCiarlet Jr., Patrick, François Lefèvre, Stéphanie Lohrengel e Serge Nicaise. "Weighted regularization for composite materials in electromagnetism". ESAIM: Mathematical Modelling and Numerical Analysis 44, n.º 1 (3 de novembro de 2009): 75–108. http://dx.doi.org/10.1051/m2an/2009041.
Texto completo da fonteNicolet, A., F. Zolla, Y. Ould Agha e S. Guenneau. "Geometrical transformations and equivalent materials in computational electromagnetism". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 27, n.º 4 (11 de julho de 2008): 806–19. http://dx.doi.org/10.1108/03321640810878216.
Texto completo da fonteZhang, Zidong, Yaman Zhao, Guohua Fan, Wenjin Zhang, Yao Liu, Jiurong Liu e Runhua Fan. "Paper-based flexible metamaterial for microwave applications". EPJ Applied Metamaterials 8 (2021): 6. http://dx.doi.org/10.1051/epjam/2020016.
Texto completo da fonteAchille Ecladore, Tchahou Tchendjeu, Yungho Edickson Bobo e Nfah Eustace Mbaka. "Design and Realization of a Controlled Electromagnetic Breaking System". Journal of Engineering 2023 (14 de agosto de 2023): 1–12. http://dx.doi.org/10.1155/2023/1426506.
Texto completo da fonteLuo, Zhi Ping, Chao Liu e Ma Ji Luo. "Study on Skin Effect in PEMFC with Dynamic Current". Advanced Materials Research 347-353 (outubro de 2011): 3246–50. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3246.
Texto completo da fonteBoller, C., I. Altpeter, G. Dobmann, M. Rabung, J. Schreiber, K. Szielasko e R. Tschuncky. "Electromagnetism as a means for understanding materials mechanics phenomena in magnetic materials". Materialwissenschaft und Werkstofftechnik 42, n.º 4 (abril de 2011): 269–78. http://dx.doi.org/10.1002/mawe.201100761.
Texto completo da fonteDmitriyev, Valery P. "Elasticity and Electromagnetism". Meccanica 39, n.º 6 (dezembro de 2004): 511–20. http://dx.doi.org/10.1007/s11012-004-6057-8.
Texto completo da fonteLohrengel, Stephanie, e Serge Nicaise. "SINGULARITIES AND DENSITY PROBLEMS FOR COMPOSITE MATERIALS IN ELECTROMAGNETISM". Communications in Partial Differential Equations 27, n.º 7-8 (7 de janeiro de 2002): 1575–623. http://dx.doi.org/10.1081/pde-120005849.
Texto completo da fonteDobrzynski, Léonard. "Interface response theory of electromagnetism in composite dielectric materials". Surface Science Letters 180, n.º 2-3 (fevereiro de 1987): A57. http://dx.doi.org/10.1016/0167-2584(87)90216-7.
Texto completo da fonteTeses / dissertações sobre o assunto "Electromagnetism – materials"
O'Dell, Ryan Andrew. "Resonant Ferromagnetic Absorption and Magnetic Characterization of Spintronic Materials". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533043360679487.
Texto completo da fonteMyers, Joshua Allen. "Nano-scale RF/Microwave Characterization of Materials' Electromagnetic Properties". Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1340883872.
Texto completo da fonteCiracì, Cristian. "Study of second-harmonic generation in nonlinear nanostructured materials". Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20053.
Texto completo da fonteThe past twenty years have been exceptionally rich on the study and fabrication of nanostructured materials to control light, but no much attention was given to nonlinear optical properties of these novel materials. In this context, the present thesis would partially address this gap. In particular, we focus on the second-harmonic generation process, by considering two fundamental aspects: the second-harmonic emission control by means of nanostructured nonlinear materials and the conversion enhancement in integrated photonic devices. A novel nonlinear localization phenomenon occurring in left-handed materials and involving isotropic phase-matching is presented. We analytically demonstrate the localization process in a homogenous left-handed material and by numerical simulation we show the effect for nonlinear photonic crystals. The backward second-harmonic localization effect is used to design a second-harmonic lens. This interesting theoretical result is numerically shown for a feasible structure working at optical frequencies. The second-harmonic generation enhancement is the complementary aspect. By taking advantage of the strong light localization achieved in finite size dielectric nonlinear nanorod chains, we show that sub-wavelength transversal confinement, together with the resonant phase-matching condition, adds an important property to the second-harmonic generation enhancement. A study of linear propagation properties of nanorod chain structures first evidences its sub-wavelength guiding capabilities. Finally, the phase-matching condition that assures the maximal nonlinear interaction in this kind of structure is presented
Meyendorf, Robert. "Nondestructive Determination of Case Depth in Surface Hardened Steels by Combination of Electromagnetic Test Methods". University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1303834395.
Texto completo da fonteParsa, Nitin. "MILLIMETER-WAVE FARADAY ROTATION FROM FERROMAGNETIC NANOWIRES AND MAGNETOELASTIC MATERIALS". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1561468969375731.
Texto completo da fonteVishal, Kumar. "Nonreciprocal magnetostatic surface wave in thin ferromagnetic film". Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1472018768.
Texto completo da fonteKung, Christopher W. "Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic media". Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1238024768.
Texto completo da fonteRoberts, Anthony M. "Implementing a Piezoelectric Transformer for a Ferroelectric Phase Shifter Circuit". Cleveland State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=csu1337025849.
Texto completo da fonteChung, Jae-Young. "Broadband Characterization Techniques for RF Materials and Engineered Composites". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269542888.
Texto completo da fonteHansen, Matthew Martin Kenneth. "Optimization of Conformal Joints in Axial Tension". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1355847865.
Texto completo da fonteLivros sobre o assunto "Electromagnetism – materials"
Tong, Colin. Advanced materials and design for electromagnetic interference shielding. Boca Raton: Taylor & Francis, 2009.
Encontre o texto completo da fonteSingapore), International Conference on Materials for Advanced Technologies (2003. Proceedings of the Symposium F: Electromagnetic materials : SUNTEC, Singapore, 7-12 December 2003. New Jersey: World Scientific, 2003.
Encontre o texto completo da fonteSolymar, L. Waves in metamaterials. Oxford: Oxford University Press, 2009.
Encontre o texto completo da fonteN, Venevt͡s︡ev I͡U︡, Li͡u︡bimov V. N, Akademii͡a︡ nauk SSSR. Otdelenie fiziko-khimii i tekhnologii neorganicheskikh materialov. e Nauchno-issledovatelʹskiĭ fiziko-khimicheskiĭ institut im. L.I͡A︡. Karpova., eds. Segnetomagnitnye veshchestva: Sbornik nauchnykh trudov. Moskva: "Nauka", 1990.
Encontre o texto completo da fonteS, Weiglhofer Werner, e Lakhtakia A. 1957-, eds. Introduction to complex mediums for optics and electromagnetics. Bellingham, Wash: SPIE Press, 2003.
Encontre o texto completo da fonteV, Eleftheriades G., e Balmain K. G, eds. Negative-refraction metamaterials: Fundamental properties and applications. Hoboken, NJ: J. Wiley, 2005.
Encontre o texto completo da fonteSchlichting, Diane. Magnetic and charged materials. Whitby, ON: Durham Distric School Board, Program Services Curriculum, 1999.
Encontre o texto completo da fonteEvans, R. W. Test report-direct and indirect lightning effects on composite materials. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteGeorge C. Marshall Space Flight Center. e United States. National Aeronautics and Space Administration., eds. Test report--direct and indirect lightning effects on composite materials. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteEvans, R. W. Test report--direct and indirect lightning effects on composite materials. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1997.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Electromagnetism – materials"
Dugdale, David. "Electrical properties of materials". In Essentials of electromagnetism, 169–87. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22780-8_7.
Texto completo da fonteDugdale, David. "Magnetic properties of materials". In Essentials of electromagnetism, 188–209. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22780-8_8.
Texto completo da fonteSibley, Martin J. N. "Ferromagnetic Materials and Components". In Introduction to Electromagnetism, 163–77. 2a ed. Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780367462703-7.
Texto completo da fonteCompton, A. J. "Electric Fields in Materials". In Basic Electromagnetism and its Applications, 50–69. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-7890-7_5.
Texto completo da fonteCompton, A. J. "Inductance and Magnetic Materials". In Basic Electromagnetism and its Applications, 92–106. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-7890-7_8.
Texto completo da fonteRosser, W. Geraint V. "Stationary dielectrics and stationary magnetic materials". In Interpretation of Classical Electromagnetism, 327–54. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-1950-6_9.
Texto completo da fonteZohuri, Bahman. "Introduction to Electromagnetism". In Thermal Effects of High Power Laser Energy on Materials, 81–145. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63064-5_4.
Texto completo da fonteLiu, Yiming, Bilen Emek Abali e Victor Eremeyev. "Prediction of Dissipation in Electronic Components by Computing Electromagnetism". In Advanced Structured Materials, 369–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28744-2_16.
Texto completo da fonteRakotomanana, Lalaonirina R. "Second Gradient Continuum: Role of Electromagnetism Interacting with the Gravitation on the Presence of Torsion and Curvature". In Advanced Structured Materials, 675–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72440-9_36.
Texto completo da fonteIda, Nathan. "Magnetic Materials and Properties". In Engineering Electromagnetics, 525–628. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3287-0_9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Electromagnetism – materials"
Lopez-Torres, A. M., J. Lobera, C. Sanchez-Azqueta e F. J. Torcal-Milla. "Support materials for teaching Electromagnetism". In 2022 Congreso de Tecnología, Aprendizaje y Enseñanza de la Electrónica (XV Technologies Applied to Electronics Teaching Conference (TAEE). IEEE, 2022. http://dx.doi.org/10.1109/taee54169.2022.9840597.
Texto completo da fonteSánchez-Dehesa, Jose, Daniel Torrent e Jorge Carbonell. "Anisotropic metamaterials as sensing devices in acoustics and electromagnetism". In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por Theodore E. Matikas. SPIE, 2012. http://dx.doi.org/10.1117/12.916043.
Texto completo da fonteMunasir, Munasir, Nurul Hidayat, Diah Hari Kusumawati, Nugrahi Primary Putri, Ahmad Taufiq e Sunaryono Sunaryono. "Amorphous-SiO2 nanoparticles for water treatment materials". In INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015673.
Texto completo da fonteChengchen Deng, Chengchen Deng, Min Zhu Min Zhu, Hongbo Zhao e Liao He. "A Method of Force Output Test for a Low Thrust High Precision Flat Space Electromagnetism Actuator". In International Conference on Mechanics,Materials and Structural Engineering (ICMMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmse-16.2016.4.
Texto completo da fonteBerton, B. "Development of Multifunctional Materials and Structures with Improved Capacities in Aerodynamics, De-icing, Acoustics or Electromagnetism for Civil and Military Aircrafts". In I European Conference On Multifunctional Structures. CIMNE, 2020. http://dx.doi.org/10.23967/emus.2019.020.
Texto completo da fonteMuhlestein, Michael B., Benjamin M. Goldsberry, Caleb F. Sieck e Michael R. Haberman. "Analytical and Numerical Investigation of Scattering From Bianisotropic Acoustic Media". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72672.
Texto completo da fonteBerbyuk, Viktor. "TERFENOL-D Based Transducer for Power Harvesting From Vibration". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34788.
Texto completo da fontePaquette, Jason W., e K. J. Kim. "Initial Assessment of Small Systems (MEMS and NEMS) Course Taught in an Undergraduate and Graduate Classroom". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39468.
Texto completo da fonteNiamien, C., S. Collardey, A. Sharaiha e K. Mahdjoubi. "Surface wave loss and material loss in printed antennas over magneto-dielectric materials". In the American Electromagnetics Conference (AMEREM). IEEE, 2010. http://dx.doi.org/10.1109/antem.2010.5552498.
Texto completo da fonteKemerling, Brandon, e Daniel Ryan. "Development of Production Eddy Current Inspection Process for Additively Manufactured Industrial Gas Turbine Engine Components". In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90971.
Texto completo da fonteRelatórios de organizações sobre o assunto "Electromagnetism – materials"
Dahal, Sachindra, e Jeffery Roesler. Passive Sensing of Electromagnetic Signature of Roadway Material for Lateral Positioning of Vehicle. Illinois Center for Transportation, novembro de 2021. http://dx.doi.org/10.36501/0197-9191/21-039.
Texto completo da fonteThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing e Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), novembro de 2020. http://dx.doi.org/10.21079/11681/38721.
Texto completo da fonteHadjipanayis, George C. Magnetic Meta-Materials for Electromagnetic Applications. Fort Belvoir, VA: Defense Technical Information Center, junho de 2006. http://dx.doi.org/10.21236/ada458377.
Texto completo da fonteHo, T. Q., J. C. Logan, J. H. Schukantz, F. W. Shaw e R. Q. Welch. Measurement of Electromagnetic Properties of Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1993. http://dx.doi.org/10.21236/ada264725.
Texto completo da fonteTaylor, Antoinette. Innovation in Materials Science: Electromagnetic Metamaterials Summary. Office of Scientific and Technical Information (OSTI), novembro de 2012. http://dx.doi.org/10.2172/1055757.
Texto completo da fonteAllen, Jeffrey, Naftali Herscovici, Brad Kramer e Bae-Ian Wu. New Concepts in Electromagnetic Materials and Antennas. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada591022.
Texto completo da fonteAllen, Jeffrey, Naftali Herscovici, Brad Kramer e Bae-Ian Wu. New Concepts in Electromagnetic Materials and Antennas. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2015. http://dx.doi.org/10.21236/ada614887.
Texto completo da fonteJones, Chriss A. Stripline resonator for electromagnetic measurements of materials. Gaithersburg, MD: National Bureau of Standards, 1998. http://dx.doi.org/10.6028/nist.tn.1505.
Texto completo da fonteBanks, H. T., V. A. Bokil, D. Cioranescu, N. L. Gibson, G. Griso e B. Miara. Homogenization of Periodically Varying Coefficients in Electromagnetic Materials. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2005. http://dx.doi.org/10.21236/ada440029.
Texto completo da fonteLieberman, A. George. Transient analysis of electromagnetic reflection from dispersive materials. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.tn.1202.
Texto completo da fonte