Literatura científica selecionada sobre o tema "Electromagnetic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Electromagnetic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Electromagnetic"
Achille Ecladore, Tchahou Tchendjeu, Yungho Edickson Bobo e Nfah Eustace Mbaka. "Design and Realization of a Controlled Electromagnetic Breaking System". Journal of Engineering 2023 (14 de agosto de 2023): 1–12. http://dx.doi.org/10.1155/2023/1426506.
Texto completo da fonteBajpai, Shrish, Siddiqui Sajida Asif e Syed Adnan Akhtar. "Electromagnetic Education in India". Comparative Professional Pedagogy 6, n.º 2 (1 de junho de 2016): 60–66. http://dx.doi.org/10.1515/rpp-2016-0020.
Texto completo da fonteR, Bharathi, Om Prakash, S, G. Gowrishankar e S. Arun. "Electromagnetic Engine Controlled using IR Sensor". Journal of Electronics,Computer Networking and Applied Mathematics, n.º 23 (20 de abril de 2022): 1–4. http://dx.doi.org/10.55529/jecnam.23.1.4.
Texto completo da fonteR, Bharathi, Om Prakash, S, G. Gowrishankar e S. Arun. "Electromagnetic Engine Controlled using IR Sensor". Journal of Electronics,Computer Networking and Applied Mathematics, n.º 23 (20 de abril de 2022): 1–4. http://dx.doi.org/10.55529/jecnam.23.1.4.
Texto completo da fonteR, Bharathi, Om Prakash, S, G. Gowrishankar e S. Arun. "Electromagnetic Engine Controlled using IR Sensor". Journal of Electronics,Computer Networking and Applied Mathematics, n.º 23 (20 de abril de 2022): 1–4. http://dx.doi.org/10.55529/jecnam.23.1.4.
Texto completo da fonteDAKSHNAMOORTHY, Easu, Ralph H. RYNTATHIANG, Sarang, SIVAKUMAR e Sidharth Krishna VINOD KUMAR. "Experimental Study of Vibration Isolation Using Electromagnetic Damping". Mechanics 30, n.º 2 (23 de abril de 2024): 183–87. http://dx.doi.org/10.5755/j02.mech.34759.
Texto completo da fonteXiang, Chun, Jun-Cheng Wang, Yu-Feng Gu, Shi-Jin Zhang e Shi-An Chen. "Experiment, Optimization, and Design of Electromagnetic Track Brake for High-Speed Railways System". Mathematical Problems in Engineering 2020 (9 de março de 2020): 1–11. http://dx.doi.org/10.1155/2020/6957963.
Texto completo da fonteLiao, Yu, Yinshui Liu, Jun Xing, Biao Chen e Lizhi Gao. "Electromagnetic force investigation of electromagnets with variable pole area in an electromagnetic diaphragm pump". PLOS ONE 18, n.º 10 (12 de outubro de 2023): e0292685. http://dx.doi.org/10.1371/journal.pone.0292685.
Texto completo da fonteJiang, Zeqi, Jianhua Fang, Fei Chen, Boshui Chen e Kecheng Gu. "Effect of electromagnetic field on tribological properties of two lubricating oils containing zinc dithiophosphate". Industrial Lubrication and Tribology 70, n.º 5 (9 de julho de 2018): 878–87. http://dx.doi.org/10.1108/ilt-01-2017-0004.
Texto completo da fonteSuzumori, Koichi, Takashi Nagata, Takefumi Kanda, Kazuo Uzuka e Isao Enomoto. "Development of Electromagnetic Nutation Motor (Electromagnetic Investigation)". Journal of Robotics and Mechatronics 16, n.º 3 (20 de junho de 2004): 327–32. http://dx.doi.org/10.20965/jrm.2004.p0327.
Texto completo da fonteTeses / dissertações sobre o assunto "Electromagnetic"
Bekele, Ephrem Teshale. "Innovative Electromagnetic Field Manipulating Devices Based on Transformation Electromagnetics". Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/368574.
Texto completo da fonteBekele, Ephrem Teshale. "Innovative Electromagnetic Field Manipulating Devices Based on Transformation Electromagnetics". Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1499/1/Ph.D.Thesis.BEKELE-April.2015.Final.pdf.
Texto completo da fonteSainath, Kamalesh K. "Robust Numerical Electromagnetic Eigenfunction Expansion Algorithms". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480340627500682.
Texto completo da fonteLei, Feiran. "Homogenization of Heterogeneous Composites by Using Effective Electromagnetic Properties". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1299513068.
Texto completo da fonteBau-Hsing, Ann. "Computer-aided electromagnetic analysis of chokes and transformers". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1438255468.
Texto completo da fonteLalley, Nicholas M. "Composite Electromagnetic Applications and Devices". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504878841254054.
Texto completo da fonteZhu, Boyuan. "The Electromagnetic Compatibility Problems of Integrated Circuits". Thesis, Griffith University, 2011. http://hdl.handle.net/10072/365527.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Park, Young C. (Young Chul) 1960. "A Study of Some Biological Effects of Non-Ionizing Electromagnetic Radiation". Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc278105/.
Texto completo da fonteStevenson, Adrian Carl. "Electromagnetic biosensors". Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/252090.
Texto completo da fonteCuff, David P. (David Preston). "Electromagnetic nanopositioner". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38712.
Texto completo da fonteIncludes bibliographical references (p. 195-200).
This thesis presents the analysis, design, and control of a new class of magnetic nanopositioner. Applications for this class of positioner include sample positioning for scanning microscopy and interferometry, nanofabrication, vibration cancellation, biological cell tracking/positioning, and beam focusing/steering. The nanometer-resolution positioning required in these applications is often provided using piezoelectric ceramic actuators. The drawbacks to using piezoelectric actuators include high hysteretic heating, lightly damped structural resonances, the need for preload on the actuator stack, as well as the requirement for a high voltage amplifier. This thesis demonstrates an electromagnetically driven nanopositioner that is suspended on rubber bearings as a promising, low cost alternative to the piezoelectric nanopositioners. Several key features of the electromagnetic nanopositioner are the flux-steering actuator that applies a force linear in both coil current and displacement, replacement of the conventional metal flexures with rubber bearings, as well as power and sense electronics that can be easily integrated into a compact package. A prototype of this class of nanopositioner with 100,pm of travel and a maximum force output of 460 N was built and tested.
(cont.) A closed-loop bandwidth of 580 Hz was obtained using capacitance distance sensor feedback. The feasibility and procedure for casting rubber bearings was investigated. Several room-temperature vulcanizing (RTV) rubbers were considered for low volume, in-lab production of test specimens. A compression specimen was cast from a two-part RTV silicone rubber that was found to be suitable. A compression fixture that was previously used to test bonded rubber pads was modified to accept the cast rubber bearings. The cast rubber bearing was found to have the predicted DC stiffness and the stiffness increased with frequency as expected. Casting of rubber bearings was demonstrated as a feasible method for putting rubber bearings into devices such as nanopositioners.
by David P. Cuff.
S.M.
Livros sobre o assunto "Electromagnetic"
Sengupta, Dipak L., e Valdis V. Liepa. Applied Electromagnetics and Electromagnetic Compatibility. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471746231.
Texto completo da fonteSengupta, Dipak L. Applied electromagnetics and electromagnetic compatibility. Hoboken, NJ: Wiley-Interscience, 2005.
Encontre o texto completo da fonte1935-, Liepa Valdis V., ed. Applied electromagnetics and electromagnetic compatibility. Hoboken, NJ: John Wiley & Sons, 2005.
Encontre o texto completo da fonteSengupta, Dipak L. Applied Electromagnetics and Electromagnetic Compatibility. New York: John Wiley & Sons, Ltd., 2005.
Encontre o texto completo da fonteH, Frey Allan, ed. On the nature of electromagnetic field interactions with biological systems. Austin: R.G. Landes, 1994.
Encontre o texto completo da fonteJ, White Donald R., e Violette Michael F, eds. Electromagnetic compatibility handbook. New York: Van Nostrand Reinhold, 1987.
Encontre o texto completo da fonteG, Skitek G., ed. Electromagnetic concepts and applications. Englewood Cliffs, N.J: Prentice-Hall, 1990.
Encontre o texto completo da fonteG, Skitek G., ed. Electromagnetic concepts and applications. 2a ed. Englewood Cliffs, N.J: Prentice-Hall, 1987.
Encontre o texto completo da fonteMarshall, S. V. Electromagnetic concepts and applications. 3a ed. Englewood Cliffs, N.J: Prentice Hall, 1990.
Encontre o texto completo da fonteDuBroff, Richard E. Electromagnetic concepts and applications. 4a ed. Upper Saddle River, N.J: Prentice Hall, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Electromagnetic"
Weik, Martin H. "electromagnetic". In Computer Science and Communications Dictionary, 490. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5913.
Texto completo da fonteHorikoshi, Satoshi, Robert F. Schiffmann, Jun Fukushima e Nick Serpone. "Electromagnetic Fields and Electromagnetic Waves". In Microwave Chemical and Materials Processing, 33–45. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6466-1_3.
Texto completo da fonteMunro, Neil. "Electromagnetic Interference and Electromagnetic Weapons". In Electronic Combat and Modern Warfare, 35–55. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-12422-0_3.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "EMI Using ADS". In Electromagnetic Interference and Electromagnetic Compatibility, 355–450. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-9.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "EMI and EMC Simulation Software". In Electromagnetic Interference and Electromagnetic Compatibility, 149–89. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-5.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "Introduction to Electromagnetic Interference and Electromagnetic Compatibility". In Electromagnetic Interference and Electromagnetic Compatibility, 1–57. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-1.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "EMI Using PSPICE". In Electromagnetic Interference and Electromagnetic Compatibility, 245–354. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-8.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "EMI Filter". In Electromagnetic Interference and Electromagnetic Compatibility, 95–126. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-3.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "EMI Using MATLAB". In Electromagnetic Interference and Electromagnetic Compatibility, 221–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-7.
Texto completo da fonteAshok Kumar, L., e Y. Uma Maheswari. "EMI/EMC Design for Printed Circuit Boards". In Electromagnetic Interference and Electromagnetic Compatibility, 127–47. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Electromagnetic"
Wang, Zhigang, e Jianguo Yang. "Research on the Electromagnetic Valve Used in Medium Pressure Common Rail Electronically Controlled Fuel Injection System". In ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1378.
Texto completo da fonteHsu, Shao-Wei, Ching-Kai Lin, Chin-Chung Chen, Yun-Chien Cheng, Chen-Wei Chang e Tien-Kan Chung. "An Electromagnetic Targeting System With Semi-Circular Configuration for Navigating Endo-Bronchoscope". In ASME 2019 28th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/isps2019-7520.
Texto completo da fonteScholz, Eike, Sebastian Lange e Thomas Eibert. "Exact discrete electromagnetism for electromagnetic system security". In 2014 International Symposium on Electromagnetic Compatibility - EMC EUROPE. IEEE, 2014. http://dx.doi.org/10.1109/emceurope.2014.6930893.
Texto completo da fontePalmer, S. B., J. F. Hernandez-Valle e S. Dixon. "Electromagnetic acoustic transduction using a pulsed electromagnet". In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por H. Felix Wu, Aaron A. Diaz, Peter J. Shull e Dietmar W. Vogel. SPIE, 2009. http://dx.doi.org/10.1117/12.815304.
Texto completo da fonte"Electromagnetic compatibility. Electromagnetic metrology". In 2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS 2010). IEEE, 2010. http://dx.doi.org/10.1109/uwbusis.2010.5609124.
Texto completo da fonte"Electromagnetic compatibility. Electromagnetic metrology". In 2012 6th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). IEEE, 2012. http://dx.doi.org/10.1109/uwbusis.2012.6379740.
Texto completo da fonteYaroslavcev, Mihail, R. Latyshev e E. Zemlyakov. "SIMULATION MODEL OF A VEHICLE WITH ELECTROMAGNETIC SUSPENSION". In CAD/EDA/SIMULATION IN MODERN ELECTRONICS 2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/conferencearticle_5e0282128ae520.40347277.
Texto completo da fonteChristopoulos, C. "Review of computational electromagnetics in electromagnetic compatibility applications". In IET 8th International Conference on Computation in Electromagnetics (CEM 2011). IET, 2011. http://dx.doi.org/10.1049/cp.2011.0003.
Texto completo da fonteShin, Buhyun, Dongho Oh e Kyung-min Lee. "A Bi-Axial Scanning Micro Mirror Using an Electromagnetic Actuator". In ASME 2017 Conference on Information Storage and Processing Systems collocated with the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/isps2017-5469.
Texto completo da fonteHou, Yanpan, Zhenxiang Liu, Jian-Ming Ouyang e Dong Yang. "Electromagnetic shielding for electromagnetic launch". In 2012 16th International Symposium on Electromagnetic Launch Technology (EML). IEEE, 2012. http://dx.doi.org/10.1109/eml.2012.6325069.
Texto completo da fonteRelatórios de organizações sobre o assunto "Electromagnetic"
Bruno, Oscar P. Electromagnetic Scattering. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2002. http://dx.doi.org/10.21236/ada398468.
Texto completo da fonteAldridge, David F. Electromagnetic Reciprocity. Office of Scientific and Technical Information (OSTI), novembro de 2014. http://dx.doi.org/10.2172/1164982.
Texto completo da fonteHyde, C., e L. Dyke. Electromagnetic techniques. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210369.
Texto completo da fonteBarrios, Amalia E., Kenneth D. Anderson e Ramakrishna Janaswamy. Electromagnetic Propagation. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2000. http://dx.doi.org/10.21236/ada610168.
Texto completo da fonteRichter, Juergen H. Electromagnetic Propagation. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1997. http://dx.doi.org/10.21236/ada629293.
Texto completo da fonteBarrios, Amalia E., Herbert V. Hitney, Kenneth D. Anderson e Ramakrishna Janaswamy. Electromagnetic Propagation. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1999. http://dx.doi.org/10.21236/ada629904.
Texto completo da fonteBaird, Ramon C., e Motohisa Kanda. Electromagnetic compatibility:. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5049.
Texto completo da fonteBarrios, Amalia E., Kenneth D. Anderson e Ramakrishna Janaswamy. Electromagnetic Propagation. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2001. http://dx.doi.org/10.21236/ada625828.
Texto completo da fonteBarrios, Amalia E., e Kenneth D. Anderson. Electromagnetic Propagation. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada627345.
Texto completo da fonteGedney, Stephen D. Advanced Electromagnetic Modeling. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2004. http://dx.doi.org/10.21236/ada427824.
Texto completo da fonte