Artigos de revistas sobre o tema "Electrolytes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electrolytes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Şahin, Mustafa Ergin. "An Overview of Different Water Electrolyzer Types for Hydrogen Production". Energies 17, n.º 19 (2 de outubro de 2024): 4944. http://dx.doi.org/10.3390/en17194944.
Texto completo da fonteJansonius, Ryan, Marta Moreno e Benjamin Britton. "High Performance AEM Water Electrolysis with Aemion® Membranes". ECS Meeting Abstracts MA2022-01, n.º 39 (7 de julho de 2022): 1723. http://dx.doi.org/10.1149/ma2022-01391723mtgabs.
Texto completo da fonteKee, Robert J., Huayang Zhu, Sandrine Ricote e Greg Jackson. "(Invited) Mixed Conduction in Ceramic Electrolytes For Intermediate-Temperature Fuel Cells and Electrolyzers". ECS Meeting Abstracts MA2023-02, n.º 46 (22 de dezembro de 2023): 2216. http://dx.doi.org/10.1149/ma2023-02462216mtgabs.
Texto completo da fonteAquigeh, Ivan Newen, Merlin Zacharie Ayissi e Dieudonné Bitondo. "Multiphysical Models for Hydrogen Production Using NaOH and Stainless Steel Electrodes in Alkaline Electrolysis Cell". Journal of Combustion 2021 (19 de março de 2021): 1–11. http://dx.doi.org/10.1155/2021/6673494.
Texto completo da fonteGerhardt, Michael Robert, Alejandro O. Barnett, Thulile Khoza, Patrick Fortin, Sara Andrenacci, Alaa Y. Faid, Pål Emil England Karstensen, Svein Sunde e Simon Clark. "An Open-Source Continuum Model for Anion-Exchange Membrane Water Electrolysis". ECS Meeting Abstracts MA2023-01, n.º 36 (28 de agosto de 2023): 2002. http://dx.doi.org/10.1149/ma2023-01362002mtgabs.
Texto completo da fonteOvechenko, Dmitry, e Alexander Boychenko. "Transformation of the Nanoporous Structure of Anodic Aluminium Oxide and its “Nonelectrolysis” Electroluminescence". Solid State Phenomena 312 (novembro de 2020): 166–71. http://dx.doi.org/10.4028/www.scientific.net/ssp.312.166.
Texto completo da fonteAshraf, Juveiriah M., Myriam Ghodhbane e Chiara Busa. "The Effect of Ionic Carriers and Degree of Solidification on the Solid-State Electrolyte Performance for Free-Standing Carbon Nanotube Supercapacitor". ECS Meeting Abstracts MA2022-02, n.º 7 (9 de outubro de 2022): 2490. http://dx.doi.org/10.1149/ma2022-0272490mtgabs.
Texto completo da fonteKumar Gupta, Pankaj, Akshay Dvivedi e Pradeep Kumar. "Effect of Electrolytes on Quality Characteristics of Glass during ECDM". Key Engineering Materials 658 (julho de 2015): 141–45. http://dx.doi.org/10.4028/www.scientific.net/kem.658.141.
Texto completo da fonteLi, Pengsong, Shiyuan Wang, Imran Ahmed Samo, Xingheng Zhang, Zhaolei Wang, Cheng Wang, Yang Li et al. "Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production". Research 2020 (24 de setembro de 2020): 1–9. http://dx.doi.org/10.34133/2020/2872141.
Texto completo da fonteProkhorov, Konstantin, Alexander Burdonov e Peter Henning. "Study of flow regimes and gas holdup in a different potentials medium in an aerated column". E3S Web of Conferences 192 (2020): 02013. http://dx.doi.org/10.1051/e3sconf/202019202013.
Texto completo da fonteKrasnova, E. V., Yu A. Morgunov, B. P. Saushkin, I. A. Slyusar e S. A. Smeyan. "Effect of Aqueous Electrolyte Composition on Efficiency of Electrochemical Post-Processing of Additive Manufacturing Products from Ti-6Al-4V Alloy Obtained by Selective Electron Beam Melting". Elektronnaya Obrabotka Materialov 60, n.º 5 (outubro de 2024): 1–12. http://dx.doi.org/10.52577/eom.2024.60.5.01.
Texto completo da fonteMirzoyeva, Amina A., e Ikhtiyar B. Bakhtiyarli. "ELECTROLYTIC SEPARATION OF SELENIUM FROM LEAD ADMIXTURES". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, n.º 3 (13 de abril de 2017): 67. http://dx.doi.org/10.6060/tcct.2017603.5436.
Texto completo da fontePark, Habin, Hui Min Tee, Parin Shah, Chandler Dietrich e Paul Kohl. "Durability and Performance of Poly(norbornene) Membranes and Ionomers in Alkaline Electrolyzers". ECS Meeting Abstracts MA2023-01, n.º 36 (28 de agosto de 2023): 2029. http://dx.doi.org/10.1149/ma2023-01362029mtgabs.
Texto completo da fonteAbellán, Gonzalo, Vicent Lloret e Alvaro Seijas Da Silva. "(Invited) Accelerated Three Electrode Cell (TEC) Testing for Optimizing Electrodes in Conventional Alkaline Electrolysis and Anion Exchange Membrane Water Electrolysis". ECS Meeting Abstracts MA2024-01, n.º 28 (9 de agosto de 2024): 1486. http://dx.doi.org/10.1149/ma2024-01281486mtgabs.
Texto completo da fonteRudenko, A. V., A. A. Kataev, O. Yu Tkacheva, Yu P. Zaykov, A. A. Pyanykh e G. V. Arkhipov. "Viscosity of conventional cryolite-alumina melts". Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy) 27, n.º 6 (10 de dezembro de 2021): 4–11. http://dx.doi.org/10.17073/0021-3438-2021-6-4-11.
Texto completo da fonteChen, H. L., e Y. X. Zhang. "Eco-friendly oxalic acid and citric acid mixed electrolytes using for plasma electrolytic polishing 304 stainless steel". Journal of Physics: Conference Series 2345, n.º 1 (1 de setembro de 2022): 012029. http://dx.doi.org/10.1088/1742-6596/2345/1/012029.
Texto completo da fonteKohl, Paul, Mrinmay Mandal, Mengjie Chen, Habin Park e Parin Shah. "(Invited) Anion Conducting Solid Polymer Ionomers Electrolytes for Fuel Cells and Electrolyzers". ECS Meeting Abstracts MA2022-02, n.º 46 (9 de outubro de 2022): 1718. http://dx.doi.org/10.1149/ma2022-02461718mtgabs.
Texto completo da fonteRakhadilov, B. K., D. R. Baizhan, Zh B. Sagdoldina e K. Torebek. "Research of regimes of applying coats by the method of plasma electrolytic oxidation on Ti-6Al-4V". Bulletin of the Karaganda University. "Physics" Series 105, n.º 1 (30 de março de 2022): 99–106. http://dx.doi.org/10.31489/2022ph1/99-106.
Texto completo da fonteLee, Seokhee, Sang Won Lee, Suji Kim e Tae Ho Shin. "Recent Advances in High Temperature Electrolysis Cells using LaGaO3-based Electrolyte". Ceramist 24, n.º 4 (31 de dezembro de 2021): 424–37. http://dx.doi.org/10.31613/ceramist.2021.24.4.06.
Texto completo da fonteLee, Seokhee, Sang Won Lee, Suji Kim e Tae Ho Shin. "Recent Advances in High Temperature Electrolysis Cells using LaGaO3-based Electrolyte". Ceramist 24, n.º 4 (31 de dezembro de 2021): 424–37. http://dx.doi.org/10.31613/ceramist.2021.24.4.42.
Texto completo da fontePark, Habin, Chenyu Li e Paul Kohl. "Durability and Performance of Poly(norbornene) Anion Exchange Membrane Alkaline Electrolyzer with High Ionic Strength Anolyte". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1792. http://dx.doi.org/10.1149/ma2024-01341792mtgabs.
Texto completo da fonteChoi, Dongnyeok, e Kwon-Yeong Lee. "Experimental Study on Water Electrolysis Using Cellulose Nanofluid". Fluids 5, n.º 4 (28 de setembro de 2020): 166. http://dx.doi.org/10.3390/fluids5040166.
Texto completo da fonteGebremariam, Goitom K., Aleksandar Z. Jovanović e Igor A. Pašti. "Kinetics of Hydrogen Evolution Reaction on Monometallic Bulk Electrodes in Various Electrolytic Solutions". Catalysts 13, n.º 10 (18 de outubro de 2023): 1373. http://dx.doi.org/10.3390/catal13101373.
Texto completo da fonteKuzin, Ya S., I. A. Kozlov, S. V. Sibileva e M. A. Fomina. "INVESTIGATION OF THE INFLUENCE OF COMPONENT COMPOSITION OF PEO ELECTROLYTES ON THEIR STABILITY AND COATING PROPERTIES". Proceedings of VIAM, n.º 11 (2020): 102–12. http://dx.doi.org/10.18577/2307-6046-2020-0-11-102-112.
Texto completo da fonteMarquez-Montes, Raul A., Kenta Kawashima, Yoon Jun Son, Grace Castelino, Nathan Miller, Lettie A. Smith, Chikaodili E. Chukwuneke e Charles Buddie Mullins. "(General Student Poster Award Winner - 1st Place) Six Practices to Improve Alkaline Electrolyte Preparation". ECS Meeting Abstracts MA2023-01, n.º 55 (28 de agosto de 2023): 2695. http://dx.doi.org/10.1149/ma2023-01552695mtgabs.
Texto completo da fonteFOMICHEV, V. T., A. V. SAVCHENKO, G. P. GUBAREVICH e E. E. EVDOKIMOV. "INFLUENCE OF PULSED CURRENT ON THE STRUCTURE OF COPPER-NICKEL ALLOY DEPOSIT". IZVESTIA VOLGOGRAD STATE TECHNICAL UNIVERSITY, n.º 6(289) (junho de 2024): 93–98. http://dx.doi.org/10.35211/1990-5297-2024-6-289-93-98.
Texto completo da fonteSaravanan, K. G., R. Prabu, A. R. Venkataramanan e Eden Tekle Beyessa. "Impact of Different Electrolytes on the Machining Rate in ECM Process". Advances in Materials Science and Engineering 2021 (30 de agosto de 2021): 1–6. http://dx.doi.org/10.1155/2021/1432300.
Texto completo da fonteKohl, Paul, Habin Park e Parin Shah. "(Invited) Anode and Cathode Self-Adhesive Ionomers for Durable Alkaline Water Electrolysis". ECS Meeting Abstracts MA2023-02, n.º 6 (22 de dezembro de 2023): 902. http://dx.doi.org/10.1149/ma2023-026902mtgabs.
Texto completo da fonteCastellani, Pablo, Clement Nicollet, Eric Quarez, Olivier Joubert e Annie Le Gal La Salle. "Synthesis of Yttrium Doped Barium Zirconate/Cerate Electrolyte Materials and Densification Using Conventional and Cold-Sintering Processes". ECS Transactions 109, n.º 13 (30 de setembro de 2022): 13–29. http://dx.doi.org/10.1149/10913.0013ecst.
Texto completo da fonteЧабан, С., О. Ковра e В. Петров. "ВІДНОВЛЕННЯ ШТОКІВ СИЛОВИХ ГІДРОЦИЛІНДРІВ АВТОМОБІЛІВ ЛЕКТРОЛІТИЧНИМ ХРОМУВАННЯМ". Collection of scientific works of Odesa Military Academy, n.º 19 (30 de junho de 2023): 126–33. http://dx.doi.org/10.37129/2313-7509.2023.19.126-133.
Texto completo da fonteBadi, Nacer, Azemtsop Manfo Theodore, Saleh A. Alghamdi, Hatem A. Al-Aoh, Abderrahim Lakhouit, Pramod K. Singh, Mohd Nor Faiz Norrrahim e Gaurav Nath. "The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries". Polymers 14, n.º 15 (30 de julho de 2022): 3101. http://dx.doi.org/10.3390/polym14153101.
Texto completo da fonteZhou, Hangyang. "Research Progress on Improvement Strategies of Polymer Electrolytes in Solid-State Batteries". Highlights in Science, Engineering and Technology 116 (7 de novembro de 2024): 302–7. http://dx.doi.org/10.54097/fyphrv62.
Texto completo da fonteFu, Wen, Li Wang e Li Chen. "The Discharge Characteristics of PEO Films in K2ZrF6 with H3PO4 Electrolyte". Advanced Materials Research 461 (fevereiro de 2012): 277–80. http://dx.doi.org/10.4028/www.scientific.net/amr.461.277.
Texto completo da fonteFu, Wen, Li Wang e Li Chen. "The Discharge Characteristics of PEO Films in K2ZrF6 with NaH2PO4 Electrolyte". Advanced Materials Research 577 (outubro de 2012): 115–18. http://dx.doi.org/10.4028/www.scientific.net/amr.577.115.
Texto completo da fonteKamaluddin, Norashima, Famiza Abdul Latif e Chan Chin Han. "The Effect of HCl Concentration on the Ionic Conductivity of Liquid PMMA Oligomer". Advanced Materials Research 1107 (junho de 2015): 200–204. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.200.
Texto completo da fonteLiu, Liyu, Kai Chen, Liguo Zhang e Bong-Ki Ryu. "Prospects of Sulfide-Based Solid-State Electrolytes Modified by Organic Thin Films". International Journal of Energy Research 2023 (6 de fevereiro de 2023): 1–7. http://dx.doi.org/10.1155/2023/2601098.
Texto completo da fonteZaikov, Yu P., V. P. Batukhtin, N. I. Shurov e A. V. Suzdaltsev. "High-temperature electrochemistry of calcium". Electrochemical Materials and Technologies 1, n.º 1 (2022): 20221007. http://dx.doi.org/10.15826/elmattech.2022.1.007.
Texto completo da fonteCarmona, Eric A., e Paul Albertus. "Solid-State Electrolyte Fracture in Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 396. http://dx.doi.org/10.1149/ma2022-024396mtgabs.
Texto completo da fonteWu, Shi Kui, e Li Wang. "The Plasma Electrolytic Oxidation Process in K2ZrF6 with Na2HPO4 Electrolyte". Advanced Materials Research 602-604 (dezembro de 2012): 1387–90. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.1387.
Texto completo da fonteKanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama e Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes". Batteries 9, n.º 10 (26 de setembro de 2023): 492. http://dx.doi.org/10.3390/batteries9100492.
Texto completo da fonteRakhadilov, Bauyrzhan, e Daryn Baizhan. "Creation of Bioceramic Coatings on the Surface of Ti–6Al–4V Alloy by Plasma Electrolytic Oxidation Followed by Gas Detonation Spraying". Coatings 11, n.º 12 (23 de novembro de 2021): 1433. http://dx.doi.org/10.3390/coatings11121433.
Texto completo da fonteAmbika, C., G. Hirankumar, S. Thanikaikarasan, K. K. Lee, E. Valenzuela e P. J. Sebastian. "Influence of TiO2 as Filler on the Discharge Characteristics of a Proton Battery". Journal of New Materials for Electrochemical Systems 18, n.º 4 (20 de novembro de 2015): 219–23. http://dx.doi.org/10.14447/jnmes.v18i4.351.
Texto completo da fonteYan, Yingchun, Zheng Liu, Xinhou Yang e Zhuangjun Fan. "Multilayer composite nanofibrous film accelerates the Li+ diffusion for quasi-solid-state lithium-ion batteries". IOP Conference Series: Earth and Environmental Science 1171, n.º 1 (1 de abril de 2023): 012034. http://dx.doi.org/10.1088/1755-1315/1171/1/012034.
Texto completo da fonteThangamani, Geethapriyan, Muthuramalingam Thangaraj, Khaja Moiduddin, Syed Hammad Mian, Hisham Alkhalefah e Usama Umer. "Performance Analysis of Electrochemical Micro Machining of Titanium (Ti-6Al-4V) Alloy under Different Electrolytes Concentrations". Metals 11, n.º 2 (2 de fevereiro de 2021): 247. http://dx.doi.org/10.3390/met11020247.
Texto completo da fonteDubinin, P. S., I. S. Yakimov, A. S. Samoilo, S. G. Ruzhnikov, O. E. Bezrukova, A. N. Zaioga, S. D. Kirik e D. V. Khiystov. "Analytical appro aches in the development of industry standard specimens of aluminum production electrolyte". Industrial laboratory. Diagnostics of materials 88, n.º 10 (24 de outubro de 2022): 20–29. http://dx.doi.org/10.26896/1028-6861-2022-88-10-20-29.
Texto completo da fonteYamada, Yuki. "(Invited) Design of Lithium Battery Electrolytes Based on Electrode Potentials". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 525. http://dx.doi.org/10.1149/ma2023-024525mtgabs.
Texto completo da fontePark, Habin, Anthony Engler, Nian Liu e Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de outubro de 2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Texto completo da fonteFenner, Emily, Elizabeth Allan-Cole, Rachel Garman e Michael F. Toney. "Characterization of Degradation Mechanisms of Alternative Electrolytes Solutions in Fast Charging Li-Ion Batteries". ECS Meeting Abstracts MA2024-01, n.º 5 (9 de agosto de 2024): 725. http://dx.doi.org/10.1149/ma2024-015725mtgabs.
Texto completo da fonteChen, Xuecheng, e Rudolf Holze. "Polymer Electrolytes for Supercapacitors". Polymers 16, n.º 22 (13 de novembro de 2024): 3164. http://dx.doi.org/10.3390/polym16223164.
Texto completo da fonteEldesoky, A., A. J. Louli, A. Benson e J. R. Dahn. "Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations". Journal of The Electrochemical Society 168, n.º 12 (1 de dezembro de 2021): 120508. http://dx.doi.org/10.1149/1945-7111/ac39e3.
Texto completo da fonte