Artigos de revistas sobre o tema "Electrolytes – Conductivity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electrolytes – Conductivity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dabrowski, L., M. Marciniak e T. Szewczyk. "Analysis of Abrasive Flow Machining with an Electrochemical Process Aid". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220, n.º 3 (1 de março de 2006): 397–403. http://dx.doi.org/10.1243/095440506x77571.
Texto completo da fonteNefedov, Vladimir G., Vadim V. Matveev e Dmytriy G. Korolyanchuk. "INFLUENCE OF FREQUENCY OF ELECTRIC CURRENT ON ELECTRIC CONDUCTIVITY OF THIN FILMS OF ELECTROLYTES". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, n.º 2 (29 de janeiro de 2018): 58. http://dx.doi.org/10.6060/tcct.20186102.5592.
Texto completo da fonteReddy Polu, Anji, e Ranveer Kumar. "Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes". E-Journal of Chemistry 8, n.º 1 (2011): 347–53. http://dx.doi.org/10.1155/2011/628790.
Texto completo da fonteKamaluddin, Norashima, Famiza Abdul Latif e Chan Chin Han. "The Effect of HCl Concentration on the Ionic Conductivity of Liquid PMMA Oligomer". Advanced Materials Research 1107 (junho de 2015): 200–204. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.200.
Texto completo da fonteSenthil, R. A., J. Theerthagiri e J. Madhavan. "Hematite Fe2O3 Nanoparticles Incorporated Polyvinyl Alcohol Based Polymer Electrolytes for Dye-Sensitized Solar Cells". Materials Science Forum 832 (novembro de 2015): 72–83. http://dx.doi.org/10.4028/www.scientific.net/msf.832.72.
Texto completo da fonteAmbika, C., G. Hirankumar, S. Thanikaikarasan, K. K. Lee, E. Valenzuela e P. J. Sebastian. "Influence of TiO2 as Filler on the Discharge Characteristics of a Proton Battery". Journal of New Materials for Electrochemical Systems 18, n.º 4 (20 de novembro de 2015): 219–23. http://dx.doi.org/10.14447/jnmes.v18i4.351.
Texto completo da fontePark, Young Seon, Jae Min Lee, Eun Jeong Yi, Ji-Woong Moon e Haejin Hwang. "All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes". Materials 14, n.º 8 (16 de abril de 2021): 1998. http://dx.doi.org/10.3390/ma14081998.
Texto completo da fonteAstakhov, Mikhail V., Ludmila A. Puntusova, Ruslan R. Galymzyanov, Ilya S. Krechetov, Alexey V. Lisitsyn, Svetlana V. Stakhanova e Natalia V. Sviridenkova. "Multicomponent non-aqueous electrolytes for high temperature operation of supercapacitors". Butlerov Communications 61, n.º 1 (31 de janeiro de 2020): 67–75. http://dx.doi.org/10.37952/roi-jbc-01/20-61-1-67.
Texto completo da fonteKumar, R., Shuchi Sharma, N. Dhiman e D. Pathak. "Study of Proton Conducting PVdF based Plasticized Polymer Electrolytes Containing Ammonium Fluoride". Material Science Research India 13, n.º 1 (5 de abril de 2016): 21–27. http://dx.doi.org/10.13005/msri/130104.
Texto completo da fonteWang, Linsheng. "Development of Novel High Li-Ion Conductivity Hybrid Electrolytes of Li10GeP2S12 (LGPS) and Li6.6La3Zr1.6Sb0.4O12 (LLZSO) for Advanced All-Solid-State Batteries". Oxygen 1, n.º 1 (15 de julho de 2021): 16–21. http://dx.doi.org/10.3390/oxygen1010003.
Texto completo da fonteYang, Yan, Jie Tao e Li Ma. "Study on Properties of Quasi Solid Polymer Electrolyte Based on PVdF-PMMA Blend for Dye-Sensitized Solar Cells". Materials Science Forum 610-613 (janeiro de 2009): 347–52. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.347.
Texto completo da fonteBin, Wu, e Fan Chun. "Summary of Lithium-Ion Battery Polymer Electrolytes". Advanced Materials Research 535-537 (junho de 2012): 2092–99. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.2092.
Texto completo da fonteLiu, Wei, Bin Li e Wei Pan. "Influence of Thickness on Oxide Ionic Conductivity in Sm3+ and Nd3+ Co-Doped CeO2 Electrolyte". Key Engineering Materials 434-435 (março de 2010): 710–13. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.710.
Texto completo da fonteJawad, Mohammed Kadhim. "Investigate Salts type and concentration on the conductivity of Polymer Electrolyte". Iraqi Journal of Physics (IJP) 17, n.º 42 (31 de agosto de 2019): 42–50. http://dx.doi.org/10.30723/ijp.v17i42.437.
Texto completo da fonteZhang, Meng Fei, Tian Jun Li, Xiao Hui Zhao, Hua Jian Zhou e Wei Pan. "Enhanced Ionic Conductivity in Ce0.8Gd0.2O2-δ Nanofiber: Effect of the Crystallite Size". Solid State Phenomena 281 (agosto de 2018): 761–66. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.761.
Texto completo da fonteRen, Yong Huan, Chun Wei Yang, Bo Rong Wu, Cun Zhong Zhang, Shi Chen e Feng Wu. "Novel Low-Temperature Electrolyte for Li-Ion Battery". Advanced Materials Research 287-290 (julho de 2011): 1283–89. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1283.
Texto completo da fonteHong, Jinhua, Shunsuke Kobayashi, Akihide Kuwabara, Yumi H. Ikuhara, Yasuyuki Fujiwara e Yuichi Ikuhara. "Defect Engineering and Anisotropic Modulation of Ionic Transport in Perovskite Solid Electrolyte LixLa(1−x)/3NbO3". Molecules 26, n.º 12 (10 de junho de 2021): 3559. http://dx.doi.org/10.3390/molecules26123559.
Texto completo da fonteSrivastava, Sandeep, e Pradeep K. Varshney. "Conductivity and structural studies of PVA based mixed-ion composite polymer electrolytes". International Journal of Engineering & Technology 7, n.º 2 (1 de junho de 2018): 887. http://dx.doi.org/10.14419/ijet.v7i2.12423.
Texto completo da fonteGupta, Sandhya, Pramod K. Singh e B. Bhattacharya. "Low-viscosity ionic liquid–doped solid polymer electrolytes". High Performance Polymers 30, n.º 8 (30 de maio de 2018): 986–92. http://dx.doi.org/10.1177/0954008318778763.
Texto completo da fonteBock, Robert, Morten Onsrud, Håvard Karoliussen, Bruno Pollet, Frode Seland e Odne Burheim. "Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries". Energies 13, n.º 1 (3 de janeiro de 2020): 253. http://dx.doi.org/10.3390/en13010253.
Texto completo da fonteKim, Han-Na, Kyung-Geun Kim, Yeon Uk Jeong e Sung Yeol Kim. "Double-Crosslinked Polyurethane Acrylate for Highly Conductive and Stable Polymer Electrolyte". Polymers 12, n.º 11 (31 de outubro de 2020): 2557. http://dx.doi.org/10.3390/polym12112557.
Texto completo da fonteHoang Huy, Vo Pham, Seongjoon So e Jaehyun Hur. "Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries". Nanomaterials 11, n.º 3 (1 de março de 2021): 614. http://dx.doi.org/10.3390/nano11030614.
Texto completo da fonteKumar, Asheesh, Raghunandan Sharma, M. Suresh, Malay K. Das e Kamal K. Kar. "Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes". Journal of Elastomers & Plastics 49, n.º 6 (4 de novembro de 2016): 513–26. http://dx.doi.org/10.1177/0095244316676512.
Texto completo da fonteUlihin, Artem, e Olga Protazanova. "Synthesis and electrical properties of Ag16I12P2O7". MATEC Web of Conferences 340 (2021): 01046. http://dx.doi.org/10.1051/matecconf/202134001046.
Texto completo da fonteMuthiah, Muthuvinayagam, Gopinathan Chellasamy, Rajeswari Natarajan, Selvasekarapandian Subramanian e Sanjeeviraja Chinnappa. "Proton conducting polymer electrolytes based on PVdF-PVA with NH4NO3". Journal of Polymer Engineering 33, n.º 4 (1 de julho de 2013): 315–22. http://dx.doi.org/10.1515/polyeng-2012-0146.
Texto completo da fonteChai, M. N., e M. I. N. Isa. "Structural Study of Plasticized Carboxy Methylcellulose Based Solid Biopolymer Electrolyte". Advanced Materials Research 1107 (junho de 2015): 242–46. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.242.
Texto completo da fonteSong, Yongli, Luyi Yang, Lei Tao, Qinghe Zhao, Zijian Wang, Yanhui Cui, Hao Liu, Yuan Lin e Feng Pan. "Probing into the origin of an electronic conductivity surge in a garnet solid-state electrolyte". Journal of Materials Chemistry A 7, n.º 40 (2019): 22898–902. http://dx.doi.org/10.1039/c9ta10269h.
Texto completo da fonteSingh, Divya, D. Kanjilal, GVS Laxmi, Pramod K. Singh, SK Tomar e Bhaskar Bhattacharya. "Conductivity and dielectric studies of Li3+-irradiated PVP-based polymer electrolytes". High Performance Polymers 30, n.º 8 (12 de junho de 2018): 978–85. http://dx.doi.org/10.1177/0954008318780494.
Texto completo da fonteYue, Zheng, Qiang Ma, Xinyi Mei, Abigail Schulz, Hamza Dunya, Dana Alramahi, Christopher McGarry et al. "Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior". ChemEngineering 3, n.º 2 (3 de junho de 2019): 58. http://dx.doi.org/10.3390/chemengineering3020058.
Texto completo da fonteRavindran, D., P. Vickraman e N. Sankarasubramanian. "Conductivity Studies on Nano ZnO Incorporated PVC-PVdF Gel Electrolytes for Li+ Ion Battery Application". Applied Mechanics and Materials 787 (agosto de 2015): 563–67. http://dx.doi.org/10.4028/www.scientific.net/amm.787.563.
Texto completo da fonteMuda, N., Salmiah Ibrahim, Norlida Kamarulzaman e Mohamed Nor Sabirin. "PVDF-HFP-NH4CF3SO3-SiO2 Nanocomposite Polymer Electrolytes for Protonic Electrochemical Cell". Key Engineering Materials 471-472 (fevereiro de 2011): 373–78. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.373.
Texto completo da fonteLee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim e Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries". Journal of Nanoscience and Nanotechnology 20, n.º 7 (1 de julho de 2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.
Texto completo da fonteLin, Xu Ping, Hai Tao Zhong, Xing Chen, Ben Ge e De Sheng Ai. "Preparation and Property of LSGM-Carbonate Composite Electrolyte for Low Temperature Solid Oxide Fuel Cell". Solid State Phenomena 281 (agosto de 2018): 754–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.754.
Texto completo da fonteUlutaş, Kemal, Ugur Yahsi, Hüseyin Deligöz, Cumali Tav, Serpil Yılmaztürk, Mesut Yılmazoğlu, Gonca Erdemci, Bilgehan Coşkun, Şahin Yakut e Deniz Değer. "Dielectric properties and conductivity of PVdF-co-HFP/LiClO4 polymer electrolytes". Canadian Journal of Physics 96, n.º 7 (julho de 2018): 786–91. http://dx.doi.org/10.1139/cjp-2017-0678.
Texto completo da fonteTamamushi, Reita, e Kazuko Tanaka. "Electrolytic conductivity of non-associated electrolytes at high concentrations". Electrochimica Acta 33, n.º 10 (outubro de 1988): 1445–48. http://dx.doi.org/10.1016/0013-4686(88)80137-3.
Texto completo da fonteSharma, Jitender Paul, e Vijay Singh. "Influence of high and low dielectric constant plasticizers on the ion transport properties of PEO: NH4HF2 polymer electrolytes". High Performance Polymers 32, n.º 2 (março de 2020): 142–50. http://dx.doi.org/10.1177/0954008319894043.
Texto completo da fonteShukur, M. F., F. Sonsudin, R. Yahya, Z. Ahmad, R. Ithnin e M. F. Z. Kadir. "Electrical Properties of Starch Based Silver Ion Conducting Solid Biopolymer Electrolyte". Advanced Materials Research 701 (maio de 2013): 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.701.120.
Texto completo da fonteWidiarti, Nuni, Woro Sumarni e Lysa Setyaningrum. "THE SYNTHESIS OF CHITOSAN POLYMER MEMBRANE/PVA AS AN ECO-FRIENDLY BATTERY FOR ALTERNATIVE ENERGY RESOURCE". Jurnal Bahan Alam Terbarukan 6, n.º 1 (30 de maio de 2017): 14–19. http://dx.doi.org/10.15294/jbat.v6i1.6880.
Texto completo da fonteYang, Chun Wei, Yong Huan Ren, Bo Rong Wu e Feng Wu. "Formulation of a New Type of Electrolytes for LiNi1/3Co1/3Mn1/3O2 Cathodes Working in an Ultra-Low Temperature Range". Advanced Materials Research 455-456 (janeiro de 2012): 258–64. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.258.
Texto completo da fonteJawad, Mohammed Kadhim. "Polymer electrolytes based PAN for dye-sensitized solar cells". Iraqi Journal of Physics (IJP) 15, n.º 33 (8 de janeiro de 2019): 143–50. http://dx.doi.org/10.30723/ijp.v15i33.150.
Texto completo da fonteSharma, Rajni, Anjan Sil e Subrata Ray. "Characterization of Plasticized PMMA-LiClO4 Solid Polymer Electrolytes". Advanced Materials Research 585 (novembro de 2012): 185–89. http://dx.doi.org/10.4028/www.scientific.net/amr.585.185.
Texto completo da fonteAbarna, S., e G. Hirankumar. "Vibrational, electrical, dielectric and optical properties of PVA-LiPF6 solid polymer electrolytes". Materials Science-Poland 37, n.º 3 (1 de setembro de 2019): 331–37. http://dx.doi.org/10.2478/msp-2019-0037.
Texto completo da fonteBoyano, Iker, Aroa R. Mainar, J. Alberto Blázquez, Andriy Kvasha, Miguel Bengoechea, Iratxe de Meatza, Susana García-Martín, Alejandro Varez, Jesus Sanz e Flaviano García-Alvarado. "Reduction of Grain Boundary Resistance of La0.5Li0.5TiO3 by the Addition of Organic Polymers". Nanomaterials 11, n.º 1 (29 de dezembro de 2020): 61. http://dx.doi.org/10.3390/nano11010061.
Texto completo da fonteVijil Vani, C., K. Karuppasamy, N. Ammakutty Sridevi, S. Balakumar e X. Sahaya Shajan. "Effect of Electron Beam Irradiation on the Mechanical and Electrochemical Properties of Plasticized Polymer Electrolytes Dispersed with Nanoparticles". Advanced Materials Research 678 (março de 2013): 229–33. http://dx.doi.org/10.4028/www.scientific.net/amr.678.229.
Texto completo da fonteGao, Hongcai, Nicholas S. Grundish, Yongjie Zhao, Aijun Zhou e John B. Goodenough. "Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries". Energy Material Advances 2020 (23 de dezembro de 2020): 1–10. http://dx.doi.org/10.34133/2020/1932952.
Texto completo da fonteGao, Hongcai, Nicholas S. Grundish, Yongjie Zhao, Aijun Zhou e John B. Goodenough. "Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries". Energy Material Advances 2021 (7 de janeiro de 2021): 1–10. http://dx.doi.org/10.34133/2021/1932952.
Texto completo da fonteTan, Feihu, Hua An, Ning Li, Jun Du e Zhengchun Peng. "Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer". Nanomaterials 11, n.º 4 (12 de abril de 2021): 989. http://dx.doi.org/10.3390/nano11040989.
Texto completo da fonteGuo, Xin, Shunchang Li, Fuhua Chen, Ying Chu, Xueying Wang, Weihua Wan, Lili Zhao e Yongping Zhu. "Performance Improvement of PVDF–HFP-Based Gel Polymer Electrolyte with the Dopant of Octavinyl-Polyhedral Oligomeric Silsesquioxane". Materials 14, n.º 11 (21 de maio de 2021): 2701. http://dx.doi.org/10.3390/ma14112701.
Texto completo da fonteAhmad, Nur Hidayah, e M. I. N. Isa. "Structural and Ionic Conductivity Studies of CMC Based Polymerelectrolyte Doped with NH4Cl". Advanced Materials Research 1107 (junho de 2015): 247–52. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.247.
Texto completo da fonteGrinchik, N. N., K. V. Dobrego e M. A. Chumachenko. "On the Measurement of Electric Resistance of Liquid Electrolytes of Accumulator Battery". ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 61, n.º 6 (11 de dezembro de 2018): 494–507. http://dx.doi.org/10.21122/1029-7448-2018-61-6-494-507.
Texto completo da fonte