Artigos de revistas sobre o tema "Electrolyte solide hybride"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electrolyte solide hybride".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama e Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes". Batteries 9, n.º 10 (26 de setembro de 2023): 492. http://dx.doi.org/10.3390/batteries9100492.
Texto completo da fonteChoi, Kyoung Hwan, Eunjeong Yi, Kyeong Joon Kim, Seunghwan Lee, Myung-Soo Park, Hansol Lee e Pilwon Heo. "(Invited) Pragmatic Approach and Challenges of All Solid State Batteries: Hybrid Solid Electrolyte for Technical Innovation". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 988. http://dx.doi.org/10.1149/ma2023-016988mtgabs.
Texto completo da fonteLI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN e S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE". International Journal of Nanoscience 09, n.º 04 (agosto de 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.
Texto completo da fonteLv, Wenjing, Kaidong Zhan, Xuecheng Ren, Lu Chen e Fan Wu. "Comparing Charge Dynamics in Organo-Inorganic Halide Perovskite: Solid-State versus Solid-Liquid Junctions". Journal of Nanoelectronics and Optoelectronics 19, n.º 2 (1 de fevereiro de 2024): 121–28. http://dx.doi.org/10.1166/jno.2024.3556.
Texto completo da fonteLiao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng e Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.
Texto completo da fonteVillaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone e Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries". Proceedings of the National Academy of Sciences 113, n.º 1 (22 de dezembro de 2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.
Texto completo da fonteZaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade e Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries". Journal of Materials Chemistry A 7, n.º 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.
Texto completo da fonteZahiri, Beniamin, Chadd Kiggins, Dijo Damien, Michael Caple, Arghya Patra, Carlos Juarez Yescaz, John B. Cook e Paul V. Braun. "Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, n.º 2 (7 de julho de 2022): 327. http://dx.doi.org/10.1149/ma2022-012327mtgabs.
Texto completo da fonteMohanty, Debabrata, Shu-Yu Chen e I.-Ming Hung. "Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries". Batteries 8, n.º 10 (9 de outubro de 2022): 173. http://dx.doi.org/10.3390/batteries8100173.
Texto completo da fonteGu, Sui, Xiao Huang, Qing Wang, Jun Jin, Qingsong Wang, Zhaoyin Wen e Rong Qian. "A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries". Journal of Materials Chemistry A 5, n.º 27 (2017): 13971–75. http://dx.doi.org/10.1039/c7ta04017b.
Texto completo da fonteWoolley, Henry Michael, e Nella Vargas-Barbosa. "Electrochemical Characterization of Thiophosphate- Ionic Liquid Hybrid Lithium Electrolytes Against Li Metal". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 986. http://dx.doi.org/10.1149/ma2023-016986mtgabs.
Texto completo da fonteCHENG, Xiong, Man LI, Yang Li, Seunghyun Song, Sowjanya Vallem e Joonho Bae. "Novel DNA-Based Polymer Solid Electrolytes for Lithium-Ion Batteries". ECS Meeting Abstracts MA2024-01, n.º 2 (9 de agosto de 2024): 350. http://dx.doi.org/10.1149/ma2024-012350mtgabs.
Texto completo da fonteSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning et al. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, n.º 5 (26 de abril de 2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Texto completo da fonteSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning et al. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, n.º 5 (26 de abril de 2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Texto completo da fonteVargas-Barbosa, Nella Marie, Sebastian Puls e Henry Michael Woolley. "Hybrid Material Concepts for Thiophosphate-Based Solid-State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 984. http://dx.doi.org/10.1149/ma2023-016984mtgabs.
Texto completo da fonteShah, Rajesh, Vikram Mittal e Angelina Mae Precilla. "Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles". J 7, n.º 3 (27 de junho de 2024): 204–17. http://dx.doi.org/10.3390/j7030012.
Texto completo da fonteThangadurai, Venkataraman. "(Invited) Lithium – Sulfur Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 545. http://dx.doi.org/10.1149/ma2022-024545mtgabs.
Texto completo da fonteThangadurai, Venkataraman. "(Invited) Garnet Solid Electrolytes for Advanced All-Solid-State Li Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 47 (9 de outubro de 2022): 1759. http://dx.doi.org/10.1149/ma2022-02471759mtgabs.
Texto completo da fonteZhai, Yanfang, Wangshu Hou, Zongyuan Chen, Zhong Zeng, Yongmin Wu, Wensheng Tian, Xiao Liang et al. "A hybrid solid electrolyte for high-energy solid-state sodium metal batteries". Applied Physics Letters 120, n.º 25 (20 de junho de 2022): 253902. http://dx.doi.org/10.1063/5.0095923.
Texto completo da fonteGerstenberg, Jessica, Dominik Steckermeier, Arno Kwade e Peter Michalowski. "Effect of Mixing Intensity on Electrochemical Performance of Oxide/Sulfide Composite Electrolytes". Batteries 10, n.º 3 (7 de março de 2024): 95. http://dx.doi.org/10.3390/batteries10030095.
Texto completo da fonteKim, Ji Sook, Sun Hwa Lee e Dong Wook Shin. "Fabrication of Hybrid Solid Electrolyte by LiPF6 Liquid Electrolyte Infiltration into Nano-Porous Na2O-SiO2-B2O3 Glass Membrane". Solid State Phenomena 124-126 (junho de 2007): 1027–30. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1027.
Texto completo da fonteWang, Linsheng. "Development of Novel High Li-Ion Conductivity Hybrid Electrolytes of Li10GeP2S12 (LGPS) and Li6.6La3Zr1.6Sb0.4O12 (LLZSO) for Advanced All-Solid-State Batteries". Oxygen 1, n.º 1 (15 de julho de 2021): 16–21. http://dx.doi.org/10.3390/oxygen1010003.
Texto completo da fonteKirchberger, Anna Maria, Patrick Walke e Tom Nilges. "Effect of Nanostructured Inorganic Ceramic Filler on Poly(ethylene oxide)-Based Solid Polymer Electrolytes". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 991. http://dx.doi.org/10.1149/ma2023-016991mtgabs.
Texto completo da fonteMéry, Adrien, Steeve Rousselot, David Lepage, David Aymé-Perrot e Mickael Dollé. "Limiting Factors Affecting the Ionic Conductivities of LATP/Polymer Hybrid Electrolytes". Batteries 9, n.º 2 (28 de janeiro de 2023): 87. http://dx.doi.org/10.3390/batteries9020087.
Texto completo da fonteMuñoz, Bianca K., Jorge Lozano, María Sánchez e Alejandro Ureña. "Hybrid Solid Polymer Electrolytes Based on Epoxy Resins, Ionic Liquid, and Ceramic Nanoparticles for Structural Applications". Polymers 16, n.º 14 (18 de julho de 2024): 2048. http://dx.doi.org/10.3390/polym16142048.
Texto completo da fonteJi, Xiaoyu, Yiruo Zhang, Mengxue Cao, Quanchao Gu, Honglei Wang, Jinshan Yu, Zi-Hao Guo e Xingui Zhou. "Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries". Journal of Advanced Ceramics 11, n.º 6 (13 de maio de 2022): 835–61. http://dx.doi.org/10.1007/s40145-022-0580-8.
Texto completo da fonteGiffin, Guinevere A., Mara Goettlinger, Hendrik Bohn, Simone Peters, Mario Weller, Alexander Naßmacher, Timo Brändel e Alex Friesen. "Development of a Polymer-Based Silicon-NMC Solid-State Cell". ECS Meeting Abstracts MA2023-02, n.º 2 (22 de dezembro de 2023): 373. http://dx.doi.org/10.1149/ma2023-022373mtgabs.
Texto completo da fonteRyu, Kun, Kyungbin Lee, Hyun Ju, Jinho Park, Ilan Stern e Seung Woo Lee. "Ceramic/Polymer Hybrid Electrolyte with Enhanced Interfacial Contact for All-Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-02, n.º 7 (9 de outubro de 2022): 2621. http://dx.doi.org/10.1149/ma2022-0272621mtgabs.
Texto completo da fonteYan, Shuo, Chae-Ho Yim, Ali Merati, Elena A. Baranova, Yaser Abu-Lebdeh e Arnaud Weck. "Interfacial Challenge for Solid-State Lithium Batteries- Liquid Addition". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 1010. http://dx.doi.org/10.1149/ma2023-0161010mtgabs.
Texto completo da fonteZhang, L. X., Y. Z. Li, L. W. Shi, R. J. Yao, S. S. Xia, Y. Wang e Y. P. Yang. "Electrospun Polyethylene Oxide (PEO)-Based Composite polymeric nanofiber electrolyte for Li-Metal Battery". Journal of Physics: Conference Series 2353, n.º 1 (1 de outubro de 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2353/1/012004.
Texto completo da fonteLee, Yan Ying, e Andre Weber. "Harmonization of Testing Procedures for All Solid State Batteries". ECS Meeting Abstracts MA2023-02, n.º 2 (22 de dezembro de 2023): 340. http://dx.doi.org/10.1149/ma2023-022340mtgabs.
Texto completo da fonteYan, Shuo, Chae-Ho Yim, Vladimir Pankov, Mackenzie Bauer, Elena Baranova, Arnaud Weck, Ali Merati e Yaser Abu-Lebdeh. "Perovskite Solid-State Electrolytes for Lithium Metal Batteries". Batteries 7, n.º 4 (7 de novembro de 2021): 75. http://dx.doi.org/10.3390/batteries7040075.
Texto completo da fonteShah, Vaidik, e Yong Lak Joo. "Rationally Designed in-Situ Gelled Polymer-Ceramic Hybrid Electrolyte Enables Superior Performance and Stability in Quasi-Solid-State Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 535. http://dx.doi.org/10.1149/ma2023-024535mtgabs.
Texto completo da fonteTsurumaki, Akiko, Rossella Rettaroli, Lucia Mazzapioda e Maria Assunta Navarra. "Inorganic–Organic Hybrid Electrolytes Based on Al-Doped Li7La3Zr2O12 and Ionic Liquids". Applied Sciences 12, n.º 14 (21 de julho de 2022): 7318. http://dx.doi.org/10.3390/app12147318.
Texto completo da fonteJiang, Wen, Lingling Dong, Shuanghui Liu, Bing Ai, Shuangshuang Zhao, Weimin Zhang, Kefeng Pan e Lipeng Zhang. "Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer". Nanomaterials 12, n.º 12 (12 de junho de 2022): 2023. http://dx.doi.org/10.3390/nano12122023.
Texto completo da fonteTeshima, Katsuya, Hajime Wagata e Shuji Oishi. "All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (1 de setembro de 2013): 000187–91. http://dx.doi.org/10.4071/cicmt-wp41.
Texto completo da fonteBabkova, Tatiana, Rudolf Kiefer e Quoc Bao Le. "Hybrid Electrolyte Based on PEO and Ionic Liquid with In Situ Produced and Dispersed Silica for Sustainable Solid-State Battery". Sustainability 16, n.º 4 (19 de fevereiro de 2024): 1683. http://dx.doi.org/10.3390/su16041683.
Texto completo da fonteKarahan Toprakci, Hatice Aylin, e Ozan Toprakci. "Recent Advances in New-Generation Electrolytes for Sodium-Ion Batteries". Energies 16, n.º 7 (31 de março de 2023): 3169. http://dx.doi.org/10.3390/en16073169.
Texto completo da fonteOkos, Alexandru, Cristina Florentina Ciobota, Adrian Mihail Motoc e Radu-Robert Piticescu. "Review on Synthesis and Properties of Lithium Lanthanum Titanate". Materials 16, n.º 22 (8 de novembro de 2023): 7088. http://dx.doi.org/10.3390/ma16227088.
Texto completo da fonteLisovskyi, Ivan, Mykyta Barykin, Sergii Solopan e Anatolii Belous. "FEATURES OF PHASE TRANSFORMATIONS IN THE SYNTHESIS OF COMPLEX LITHIUM-CONDUCTING OXIDE MATERIALS". Ukrainian Chemistry Journal 87, n.º 9 (25 de outubro de 2021): 14–34. http://dx.doi.org/10.33609/2708-129x.87.09.2021.14-34.
Texto completo da fonteLin, Ruifan, Yingmin Jin, Yumeng Li, Xuebai Zhang e Yueping Xiong. "Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery". Batteries 9, n.º 6 (6 de junho de 2023): 314. http://dx.doi.org/10.3390/batteries9060314.
Texto completo da fonteLiu, Yue, Qintao Sun, Peiping Yu, Bingyun Ma, Hao Yang, Jiayi Zhang, Miao Xie e Tao Cheng. "In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study". Journal of Materials Chemistry A 10, n.º 2 (2022): 632–39. http://dx.doi.org/10.1039/d1ta08182a.
Texto completo da fonteToghyani, Somayeh, Florian Baakes, Ningxin Zhang, Helmut Kühnelt, Walter Cistjakov e Ulrike Krewer. "(Digital Presentation) Model-Assisted Design of Oxide-Based All-Solid-State Li-Batteries with Hybrid Electrolytes for Aviation". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 484. http://dx.doi.org/10.1149/ma2022-024484mtgabs.
Texto completo da fonteThangadurai, Venkataraman, Sanoop Palakkathodi Kammampata e Hirotoshi Yamada. "(Invited) Garnet-Type Electrolytes for All-Solid-State Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 1 (9 de outubro de 2022): 37. http://dx.doi.org/10.1149/ma2022-02137mtgabs.
Texto completo da fonteBertrand, Marc, Steeve Rousselot, David Aymé-Perrot e Mickaël Dollé. "Assembling an All-Solid-State Ceramic Battery: Assessment of Chemical and Thermal Compatibility of Solid Ceramic Electrolytes and Active Material Using High Temperature X-Ray Diffraction". ECS Meeting Abstracts MA2022-02, n.º 7 (9 de outubro de 2022): 2421. http://dx.doi.org/10.1149/ma2022-0272421mtgabs.
Texto completo da fonteLoudeche, Maxime, Rémy Rouxhet e Joris Proost. "Development of a New Type of Electrochemical Reactor for Low Temperature Lime and Cement Production". ECS Meeting Abstracts MA2023-01, n.º 24 (28 de agosto de 2023): 1603. http://dx.doi.org/10.1149/ma2023-01241603mtgabs.
Texto completo da fonteBerling, Sabrina, Jose Manuel Hidalgo, Sotirios Mavrikis, Nagaraj Patil, Enrique Garcia - Quismondo, Jesus Palma e Carlos Ponce de Leon. "Adaptation of a Vanadium Redox Flow Battery for Thermal Applications Using a Solid Capacity Booster". ECS Meeting Abstracts MA2023-02, n.º 59 (22 de dezembro de 2023): 2851. http://dx.doi.org/10.1149/ma2023-02592851mtgabs.
Texto completo da fonteLim, Seung, Juyoung Moon, Uoon Baek, Jae Lee, Youngjin Chae e Jung Park. "Shape-Controlled TiO2 Nanomaterials-Based Hybrid Solid-State Electrolytes for Solar Energy Conversion with a Mesoporous Carbon Electrocatalyst". Nanomaterials 11, n.º 4 (3 de abril de 2021): 913. http://dx.doi.org/10.3390/nano11040913.
Texto completo da fonteTam, Vincent, e Jesse S. Wainright. "Considerations for Ionic Diffusion in Slurry Electrolytes for Redox Flow Batteries". ECS Meeting Abstracts MA2023-01, n.º 3 (28 de agosto de 2023): 784. http://dx.doi.org/10.1149/ma2023-013784mtgabs.
Texto completo da fonteSankara Raman, Ashwin, Samik Jhulki, Billy Johnson, Aashray Narla e Gleb Yushin. "Facile in-Situ Polymerized Polymer Electrolytes in All Solid-State Lithium-Ion Batteries". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de outubro de 2022): 316. http://dx.doi.org/10.1149/ma2022-023316mtgabs.
Texto completo da fonte