Artigos de revistas sobre o tema "Electroactive scaffold"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electroactive scaffold".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gupta, Kriti, Ruchi Patel, Madara Dias, Hina Ishaque, Kristopher White e Ronke Olabisi. "Development of an Electroactive Hydrogel as a Scaffold for Excitable Tissues". International Journal of Biomaterials 2021 (30 de janeiro de 2021): 1–9. http://dx.doi.org/10.1155/2021/6669504.
Texto completo da fonteAngulo-Pineda, Carolina, Kasama Srirussamee, Patricia Palma, Victor M. Fuenzalida, Sarah H. Cartmell e Humberto Palza. "Electroactive 3D Printed Scaffolds Based on Percolated Composites of Polycaprolactone with Thermally Reduced Graphene Oxide for Antibacterial and Tissue Engineering Applications". Nanomaterials 10, n.º 3 (28 de fevereiro de 2020): 428. http://dx.doi.org/10.3390/nano10030428.
Texto completo da fonteSun, Baojun, Yajie Sun, Shuwei Han, Ruitong Zhang, Xiujuan Wang, Chunxia Meng, Tuo Ji et al. "Electroactive Hydroxyapatite/Carbon Nanofiber Scaffolds for Osteogenic Differentiation of Human Adipose-Derived Stem Cells". International Journal of Molecular Sciences 24, n.º 1 (28 de dezembro de 2022): 530. http://dx.doi.org/10.3390/ijms24010530.
Texto completo da fonteWibowo, Arie, Gusti U. N. Tajalla, Maradhana A. Marsudi, Glen Cooper, Lia A. T. W. Asri, Fengyuan Liu, Husaini Ardy e Paulo J. D. S. Bartolo. "Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds". Molecules 26, n.º 7 (2 de abril de 2021): 2042. http://dx.doi.org/10.3390/molecules26072042.
Texto completo da fonteZaszczyńska, Angelika, Arkadiusz Gradys, Anna Ziemiecka, Piotr K. Szewczyk, Ryszard Tymkiewicz, Małgorzata Lewandowska-Szumieł, Urszula Stachewicz e Paweł Ł. Sajkiewicz. "Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications". International Journal of Molecular Sciences 25, n.º 9 (2 de maio de 2024): 4980. http://dx.doi.org/10.3390/ijms25094980.
Texto completo da fonteChen, Jing, Juan Ge, Baolin Guo, Kun Gao e Peter X. Ma. "Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering". Journal of Materials Chemistry B 4, n.º 14 (2016): 2477–85. http://dx.doi.org/10.1039/c5tb02703a.
Texto completo da fonteWibowo, Arie, Cian Vyas, Glen Cooper, Fitriyatul Qulub, Rochim Suratman, Andi Isra Mahyuddin, Tatacipta Dirgantara e Paulo Bartolo. "3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering". Materials 13, n.º 3 (22 de janeiro de 2020): 512. http://dx.doi.org/10.3390/ma13030512.
Texto completo da fonteCastro, Nelson, Margarida M. Fernandes, Clarisse Ribeiro, Vítor Correia, Rikardo Minguez e Senentxu Lanceros-Méndez. "Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies". Sensors 20, n.º 12 (12 de junho de 2020): 3340. http://dx.doi.org/10.3390/s20123340.
Texto completo da fonteSanchez, Jérémie-Luc, e Christel Laberty-Robert. "A novel microbial fuel cell electrode design: prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning". Journal of Materials Chemistry B 9, n.º 21 (2021): 4309–18. http://dx.doi.org/10.1039/d1tb00680k.
Texto completo da fonteBarbosa, Frederico, Fábio F. F. Garrudo, Ana C. Marques, Joaquim M. S. Cabral, Jorge Morgado, Frederico Castelo Ferreira e João C. Silva. "Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications". International Journal of Molecular Sciences 24, n.º 17 (25 de agosto de 2023): 13203. http://dx.doi.org/10.3390/ijms241713203.
Texto completo da fonteAmiryaghoubi, Nazanin, e Marziyeh Fathi. "Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering". BioImpacts 14, n.º 1 (12 de agosto de 2023): 27684. http://dx.doi.org/10.34172/bi.2023.27684.
Texto completo da fonteYow, Soh-Zeom, Tze Han Lim, Evelyn K. F. Yim, Chwee Teck Lim e Kam W. Leong. "A 3D Electroactive Polypyrrole-Collagen Fibrous Scaffold for Tissue Engineering". Polymers 3, n.º 1 (28 de fevereiro de 2011): 527–44. http://dx.doi.org/10.3390/polym3010527.
Texto completo da fonteGuan, Shui, Yangbin Wang, Feng Xie, Shuping Wang, Weiping Xu, Jianqiang Xu e Changkai Sun. "Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation". Molecules 27, n.º 23 (29 de novembro de 2022): 8326. http://dx.doi.org/10.3390/molecules27238326.
Texto completo da fonteVandghanooni, Somayeh, Hadi Samadian, Sattar Akbari-Nakhjavani, Balal Khalilzadeh, Morteza Eskandani, Bakhshali Massoumi e Mehdi Jaymand. "Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application". Journal of Materials Research 37, n.º 3 (6 de janeiro de 2022): 796–806. http://dx.doi.org/10.1557/s43578-021-00482-1.
Texto completo da fonteWu, Yehong, Sheng Feng, Xingjie Zan, Yuan Lin e Qian Wang. "Aligned Electroactive TMV Nanofibers as Enabling Scaffold for Neural Tissue Engineering". Biomacromolecules 16, n.º 11 (7 de outubro de 2015): 3466–72. http://dx.doi.org/10.1021/acs.biomac.5b00884.
Texto completo da fonteRibeiro, Sylvie, Teresa Marques-Almeida, Vanessa F. Cardoso, Clarisse Ribeiro e Senentxu Lanceros-Méndez. "Modulation of myoblast differentiation by electroactive scaffold morphology and biochemical stimuli". Biomaterials Advances 151 (agosto de 2023): 213438. http://dx.doi.org/10.1016/j.bioadv.2023.213438.
Texto completo da fonteMa, Chunyang, Le Jiang, Yingjin Wang, Fangli Gang, Nan Xu, Ting Li, Zhongqun Liu et al. "3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations". Materials 12, n.º 15 (6 de agosto de 2019): 2491. http://dx.doi.org/10.3390/ma12152491.
Texto completo da fonteWang, Liu, Changfeng Lu, Shuhui Yang, Pengcheng Sun, Yu Wang, Yanjun Guan, Shuang Liu et al. "A fully biodegradable and self-electrified device for neuroregenerative medicine". Science Advances 6, n.º 50 (dezembro de 2020): eabc6686. http://dx.doi.org/10.1126/sciadv.abc6686.
Texto completo da fonteBarbosa, Frederico, Frederico Castelo Ferreira e João Carlos Silva. "Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering". International Journal of Molecular Sciences 23, n.º 6 (8 de março de 2022): 2907. http://dx.doi.org/10.3390/ijms23062907.
Texto completo da fonteLi, Meng-yan, Paul Bidez, Elizabeth Guterman-Tretter, Yi Guo, Alan G. MacDiarmid, Peter I. Lelkes, Xu-bo Yuan et al. "ELECTROACTIVE AND NANOSTRUCTURED POLYMERS AS SCAFFOLD MATERIALS FOR NEURONAL AND CARDIAC TISSUE ENGINEERING". Chinese Journal of Polymer Science 25, n.º 04 (2007): 331. http://dx.doi.org/10.1142/s0256767907002199.
Texto completo da fonteArnaboldi, Serena, Tiziana Benincori, Andrea Penoni, Luca Vaghi, Roberto Cirilli, Sergio Abbate, Giovanna Longhi et al. "Highly enantioselective “inherently chiral” electroactive materials based on a 2,2′-biindole atropisomeric scaffold". Chemical Science 10, n.º 9 (2019): 2708–17. http://dx.doi.org/10.1039/c8sc04862b.
Texto completo da fonteShafei, Sajjad, Javad Foroughi, Leo Stevens, Cynthia S. Wong, Omid Zabihi e Minoo Naebe. "Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres". Research on Chemical Intermediates 43, n.º 2 (17 de agosto de 2016): 1235–51. http://dx.doi.org/10.1007/s11164-016-2695-4.
Texto completo da fonteMackle, Joseph N., David J. P. Blond, Emma Mooney, Caitlin McDonnell, Werner J. Blau, Georgina Shaw, Frank P. Barry, J. Mary Murphy e Valerie Barron. "In vitro Characterization of an Electroactive Carbon-Nanotube-Based Nanofiber Scaffold for Tissue Engineering". Macromolecular Bioscience 11, n.º 9 (4 de julho de 2011): 1272–82. http://dx.doi.org/10.1002/mabi.201100029.
Texto completo da fonteLi, Liao e Tjong. "Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering". Nanomaterials 9, n.º 7 (30 de junho de 2019): 952. http://dx.doi.org/10.3390/nano9070952.
Texto completo da fonteChhatwal, Megha, Anup Kumar, Satish K. Awasthi, Michael Zharnikov e Rinkoo D. Gupta. "An Electroactive Metallo–Polypyrene Film As A Molecular Scaffold For Multi-State Volatile Memory Devices". Journal of Physical Chemistry C 120, n.º 4 (26 de janeiro de 2016): 2335–42. http://dx.doi.org/10.1021/acs.jpcc.5b12597.
Texto completo da fonteCui, Liguo, Jin Zhang, Jun Zou, Xianrui Yang, Hui Guo, Huayu Tian, Peibiao Zhang et al. "Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation". Biomaterials 230 (fevereiro de 2020): 119617. http://dx.doi.org/10.1016/j.biomaterials.2019.119617.
Texto completo da fonteHuang, Peng, Yang Wu, Xinxin Wang, Peng Chen, Shuigen Li e Yuan-Li Ding. "Engineering edge-exposed MoS2 nanoflakes anchored on the 3D cross-linked carbon frameworks for enhanced lithium storage". Functional Materials Letters 13, n.º 08 (novembro de 2020): 2051050. http://dx.doi.org/10.1142/s1793604720510509.
Texto completo da fonteMawad, Damia, Catherine Mansfield, Antonio Lauto, Filippo Perbellini, Geoffrey W. Nelson, Joanne Tonkin, Sean O. Bello et al. "A conducting polymer with enhanced electronic stability applied in cardiac models". Science Advances 2, n.º 11 (novembro de 2016): e1601007. http://dx.doi.org/10.1126/sciadv.1601007.
Texto completo da fonteMarsudi, Maradhana Agung, Ridhola Tri Ariski, Arie Wibowo, Glen Cooper, Anggraini Barlian, Riska Rachmantyo e Paulo J. D. S. Bartolo. "Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives". International Journal of Molecular Sciences 22, n.º 21 (26 de outubro de 2021): 11543. http://dx.doi.org/10.3390/ijms222111543.
Texto completo da fonteChen, Yutong, Yan Xu e Seeram Ramakrishna. "Electromagnetic-responsive targeted delivery scaffold technology has better potential to repair injured peripheral nerves: a narrative review". Advanced Technology in Neuroscience 1, n.º 1 (setembro de 2024): 51–71. http://dx.doi.org/10.4103/atn.atn-d-24-00002.
Texto completo da fonteTajalla, Gusti Umindya Nur, Mukhammad Arif Fakhruddin, Adinda Asmoro, Arif Basuki e Arie Wibowo. "The Influence of Ph on Green Synthesis of Honey-Mediated Silver Nanoparticles". Key Engineering Materials 891 (6 de julho de 2021): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.891.83.
Texto completo da fonteAliwarga, Bryan S., Khalid Muhammad, Lia A. T. W. Asri e Arie Wibowo. "Microwave-assisted synthesis of silver nanoparticles using extract of unbaked cilembu sweet potato". Journal of Physics: Conference Series 2866, n.º 1 (1 de outubro de 2024): 012002. http://dx.doi.org/10.1088/1742-6596/2866/1/012002.
Texto completo da fonteAleemardani, Mina, Pariya Zare, Amelia Seifalian, Zohreh Bagher e Alexander M. Seifalian. "Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury". Biomedicines 10, n.º 1 (30 de dezembro de 2021): 73. http://dx.doi.org/10.3390/biomedicines10010073.
Texto completo da fonteZhou, Ting, Liwei Yan, Chaoming Xie, Pengfei Li, Lili Jiang, Ju Fang, Cancan Zhao et al. "A Mussel‐Inspired Persistent ROS‐Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical‐Driven In Situ Nanoassembly". Small 15, n.º 25 (20 de maio de 2019): 1805440. http://dx.doi.org/10.1002/smll.201805440.
Texto completo da fonteLiang, Zheng, Kai Yan, Guangmin Zhou, Allen Pei, Jie Zhao, Yongming Sun, Jin Xie et al. "Composite lithium electrode with mesoscale skeleton via simple mechanical deformation". Science Advances 5, n.º 3 (março de 2019): eaau5655. http://dx.doi.org/10.1126/sciadv.aau5655.
Texto completo da fonteGolbaten-Mofrad, Hooman, Alireza Seyfi Sahzabi, Saba Seyfikar, Mohammad Hadi Salehi, Vahabodin Goodarzi, Frederik R. Wurm e Seyed Hassan Jafari. "Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications". European Polymer Journal 159 (outubro de 2021): 110749. http://dx.doi.org/10.1016/j.eurpolymj.2021.110749.
Texto completo da fonteMiguel, Álvaro, Francisco González, Víctor Gregorio, Nuria García e Pilar Tiemblo. "Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes". Polymers 11, n.º 3 (1 de março de 2019): 406. http://dx.doi.org/10.3390/polym11030406.
Texto completo da fonteBarbosa, F., F. F. F. Garrudo, P. S. Alberte, M. S. Carvalho, F. C. Ferreira e J. C. Silva. "NOVEL PIEZOELECTRIC AND OSTEOCONDUCTIVE NANOFIBRES FOR BONE TISSUE ENGINEERING". Orthopaedic Proceedings 106-B, SUPP_1 (2 de janeiro de 2024): 111. http://dx.doi.org/10.1302/1358-992x.2024.1.111.
Texto completo da fonteFan, Bo, Zheng Guo, Xiaokang Li, Songkai Li, Peng Gao, Xin Xiao, Jie Wu, Chao Shen, Yilai Jiao e Wentao Hou. "Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects". Bioactive Materials 5, n.º 4 (dezembro de 2020): 1087–101. http://dx.doi.org/10.1016/j.bioactmat.2020.07.001.
Texto completo da fonteAlves, Thais, Juliana Souza, Venancio Amaral, Danilo Almeida, Denise Grotto, Renata Lima, Norberto Aranha et al. "Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial". Colloids and Surfaces A: Physicochemical and Engineering Aspects 579 (outubro de 2019): 123650. http://dx.doi.org/10.1016/j.colsurfa.2019.123650.
Texto completo da fonteHamzah, Mohd Syahir Anwar, Azhan Austad, Saiful Izwan Abd Razak e Nadirul Hasraf Mat Nayan. "Tensile and wettability properties of electrospun polycaprolactone coated with pectin/polyaniline composite for drug delivery application". International Journal of Structural Integrity 10, n.º 5 (7 de outubro de 2019): 704–13. http://dx.doi.org/10.1108/ijsi-04-2019-0033.
Texto completo da fonteMarques-Almeida, Teresa, Vanessa F. Cardoso, Miguel Gama, Senentxu Lanceros-Mendez e Clarisse Ribeiro. "Patterned Piezoelectric Scaffolds for Osteogenic Differentiation". International Journal of Molecular Sciences 21, n.º 21 (7 de novembro de 2020): 8352. http://dx.doi.org/10.3390/ijms21218352.
Texto completo da fontePlanellas, Marc, Maria M. Pérez-Madrigal, Luís J. del Valle, Sophio Kobauri, Ramaz Katsarava, Carlos Alemán e Jordi Puiggalí. "Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds". Polymer Chemistry 6, n.º 6 (2015): 925–37. http://dx.doi.org/10.1039/c4py01243g.
Texto completo da fonteMassaglia, Giulia, Adriano Sacco, Angelica Chiodoni, Candido Fabrizio Pirri e Marzia Quaglio. "Living Bacteria Directly Embedded into Electrospun Nanofibers: Design of New Anode for Bio-Electrochemical Systems". Nanomaterials 11, n.º 11 (16 de novembro de 2021): 3088. http://dx.doi.org/10.3390/nano11113088.
Texto completo da fonteIvanoska-Dacikj, Aleksandra, Petre Makreski, Nikola Geskovski, Joanna Karbowniczek, Urszula Stachewicz, Nenad Novkovski, Jelena Tanasić, Ivan Ristić e Gordana Bogoeva-Gaceva. "Electrospun PEO/rGO Scaffolds: The Influence of the Concentration of rGO on Overall Properties and Cytotoxicity". International Journal of Molecular Sciences 23, n.º 2 (17 de janeiro de 2022): 988. http://dx.doi.org/10.3390/ijms23020988.
Texto completo da fonteWickham, Abeni, Mikhail Vagin, Hazem Khalaf, Sergio Bertazzo, Peter Hodder, Staffan Dånmark, Torbjörn Bengtsson, Jordi Altimiras e Daniel Aili. "Electroactive biomimetic collagen-silver nanowire composite scaffolds". Nanoscale 8, n.º 29 (2016): 14146–55. http://dx.doi.org/10.1039/c6nr02027e.
Texto completo da fonteMejias, Sara H., Zahra Bahrami-Dizicheh, Mantas Liutkus, Dayn Joshep Sommer, Andrei Astashkin, Gerdenis Kodis, Giovanna Ghirlanda e Aitziber L. Cortajarena. "Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters". Chemical Communications 55, n.º 23 (2019): 3319–22. http://dx.doi.org/10.1039/c8cc06827e.
Texto completo da fonteHitscherich, Pamela, Ashish Aphale, Richard Gordan, Ricardo Whitaker, Prabhakar Singh, Lai-hua Xie, Prabir Patra e Eun Jung Lee. "Electroactive graphene composite scaffolds for cardiac tissue engineering". Journal of Biomedical Materials Research Part A 106, n.º 11 (16 de outubro de 2018): 2923–33. http://dx.doi.org/10.1002/jbm.a.36481.
Texto completo da fontePor Hajrezaei, Sana, Masoumeh Haghbin Nazarpak, Shahriar Hojjati Emami e Elham Shahryari. "Biocompatible and Electroconductive Nanocomposite Scaffolds with Improved Piezoelectric Response for Bone Tissue Engineering". International Journal of Polymer Science 2022 (25 de abril de 2022): 1–10. http://dx.doi.org/10.1155/2022/4521937.
Texto completo da fonteFarooqi, Abdul Razzaq, Julius Zimmermann, Rainer Bader e Ursula van Rienen. "Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering". Materials 12, n.º 18 (9 de setembro de 2019): 2913. http://dx.doi.org/10.3390/ma12182913.
Texto completo da fonte