Artigos de revistas sobre o tema "Electroactive Molecules"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electroactive Molecules".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gorman, Christopher B. "Encapsulated electroactive molecules". Advanced Materials 9, n.º 14 (1997): 1117–19. http://dx.doi.org/10.1002/adma.19970091412.
Texto completo da fonteDai, Yunlong, e Xianwen Kan. "From non-electroactive to electroactive species: highly selective and sensitive detection based on a dual-template molecularly imprinted polymer electrochemical sensor". Chem. Commun. 53, n.º 86 (2017): 11755–58. http://dx.doi.org/10.1039/c7cc06329f.
Texto completo da fonteCoronado, E., J. R. Galán-Mascarós e C. J. Gómez-García. "Hybrid molecular magnets incorporating organic donors and other electroactive molecules". Synthetic Metals 102, n.º 1-3 (junho de 1999): 1459–60. http://dx.doi.org/10.1016/s0379-6779(98)00518-9.
Texto completo da fonteTirado, Jorge D., David Acevedo, Richard L. Bretz e Hector D. Abruna. "Adsorption Dynamics of Electroactive Self-Assembling Molecules". Langmuir 10, n.º 6 (junho de 1994): 1971–79. http://dx.doi.org/10.1021/la00018a057.
Texto completo da fonteYamamoto, Yohei. "Electroactive Nanotubes from π-Conjugated Discotic Molecules". Bulletin of the Chemical Society of Japan 84, n.º 1 (15 de janeiro de 2011): 17–25. http://dx.doi.org/10.1246/bcsj.20100272.
Texto completo da fonteClair, Sean, e Michael R. Norris. "Strategy for functionalization of electrodes with discrete, unmodified small molecules exhibiting aqueous stability". Journal of Materials Chemistry A 8, n.º 31 (2020): 15681–86. http://dx.doi.org/10.1039/d0ta03785k.
Texto completo da fonteRybakiewicz, Renata, Łukasz Skórka e Roman Gańczarczyk. "Dithienopyrrole-based Organic Electroactive Materials and Their Photovoltaic Aspects". Current Organic Chemistry 24, n.º 23 (28 de dezembro de 2020): 2695–736. http://dx.doi.org/10.2174/1385272824999201014154321.
Texto completo da fonteVela, Sonia, José Augusto Berrocal, Carmen Atienza, E. W. Meijer e Nazario Martín. "Mesoscopic helical architectures via self-assembly of porphyrin-based discotic systems". Chemical Communications 53, n.º 29 (2017): 4084–87. http://dx.doi.org/10.1039/c7cc01670k.
Texto completo da fonteBreitwieser, R., M. Marsault, V. Repain, J. Lagoute, C. Chacon, Y. Girard, S. Rousset et al. "Long-range ordered nanodomains of grafted electroactive molecules". Journal of Chemical Physics 139, n.º 20 (28 de novembro de 2013): 204703. http://dx.doi.org/10.1063/1.4830402.
Texto completo da fontePshenichnyuk, S. A., A. V. Kukhto, I. N. Kukhto e N. L. Asfandiarov. "Resonance capture of electrons by electroactive organic molecules". Russian Journal of Physical Chemistry B 4, n.º 6 (dezembro de 2010): 1014–27. http://dx.doi.org/10.1134/s1990793110060205.
Texto completo da fonteMecheri, B., G. Gabrielli, L. Piras, L. Ciotti, M. Cocco e G. Caminati. "Immobilization of electroactive molecules in organized thin films". Materials Science and Engineering: C 22, n.º 2 (dezembro de 2002): 307–12. http://dx.doi.org/10.1016/s0928-4931(02)00216-3.
Texto completo da fonteRuiz, Constanza, Ángeles Monge, Enrique Gutiérrez-Puebla, Ibon Alkorta, José Elguero, Juan T. López Navarrete, M. Carmen Ruiz Delgado e Berta Gómez-Lor. "Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules". Chemistry - A European Journal 22, n.º 30 (20 de junho de 2016): 10651–60. http://dx.doi.org/10.1002/chem.201600932.
Texto completo da fonteSarmet, Julien, Fabrice Leroux, Christine Taviot-Gueho, Patrick Gerlach, Camille Douard, Thierry Brousse, Gwenaëlle Toussaint e Philippe Stevens. "Interleaved Electroactive Molecules into LDH Working on Both Electrodes of an Aqueous Battery-Type Device". Molecules 28, n.º 3 (19 de janeiro de 2023): 1006. http://dx.doi.org/10.3390/molecules28031006.
Texto completo da fonteVecherskii, Sergei Ivanovich, Maksim Alekseevich Konopel'ko e Nikolai Nikolaevich Batalov. "The equilibrate concentration of the electro-active species in (Li0.62K0.38)2CO3 melt and reaction mechanisms of the oxygen reduction on the gold electrode". Electrochemical Energetics 11, n.º 3 (2011): 120–27. http://dx.doi.org/10.18500/1608-4039-2011-11-3-120-127.
Texto completo da fontePhan Thanh, Hai, Le Tran Thi Ngoc, Mai Truong Thi Cam, Thanh Huynh Thi Minh e Trung Huynh Thi Mien. "Dibenzyl viologgen adlayer functionalzed graphitic surraces using electrochemical approach". Vietnam Journal of Catalysis and Adsorption 10, n.º 1S (15 de outubro de 2021): 14–17. http://dx.doi.org/10.51316/jca.2021.083.
Texto completo da fonteMas-Torrent, M., C. Rovira e J. Veciana. "Surface-Confined Electroactive Molecules for Multistate Charge Storage Information". Advanced Materials 25, n.º 3 (23 de julho de 2012): 462–68. http://dx.doi.org/10.1002/adma.201201510.
Texto completo da fonteYamamoto, Yohei. "ChemInform Abstract: Electroactive Nanotubes from π-Conjugated Discotic Molecules". ChemInform 42, n.º 17 (31 de março de 2011): no. http://dx.doi.org/10.1002/chin.201117224.
Texto completo da fonteSouto, Manuel, Joaquín Calbo, Samuel Mañas-Valero, Aron Walsh e Guillermo Mínguez Espallargas. "Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework". Beilstein Journal of Nanotechnology 10 (18 de setembro de 2019): 1883–93. http://dx.doi.org/10.3762/bjnano.10.183.
Texto completo da fonteFujisaki, Masahiro, Ryoya Naito, Takashi Shirahata, Yoshitaka Kawasugi, Naoya Tajima e Yohji Misaki. "Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene". Chemistry 6, n.º 6 (25 de novembro de 2024): 1509–22. http://dx.doi.org/10.3390/chemistry6060091.
Texto completo da fonteKrukiewicz, Katarzyna, e Jean-Christophe Lacroix. "Preface: Electroactive conjugated molecules and macromolecules in bioelectrochemistry and biosensing". Synthetic Metals 296 (julho de 2023): 117382. http://dx.doi.org/10.1016/j.synthmet.2023.117382.
Texto completo da fonteWeese-Myers, Moriah E., e Ashley E. Ross. "Characterization of Electroactive Amino Acids with Fast-Scan Cyclic Voltammetry". Journal of The Electrochemical Society 168, n.º 12 (1 de dezembro de 2021): 126524. http://dx.doi.org/10.1149/1945-7111/ac4187.
Texto completo da fonteMecheri, B., L. Piras, L. Ciotti e G. Caminati. "Electrode Coating With Ultrathin Films Containing Electroactive Molecules for Biosensor Applications". IEEE Sensors Journal 4, n.º 2 (abril de 2004): 171–79. http://dx.doi.org/10.1109/jsen.2004.823675.
Texto completo da fonteLee, W. R., Y. Kim, J. Y. Kim, T. H. Kim, K. D. Ahn e E. Kim. "Electro-fluorescence Switching of Bis-imidazolium onic Liquids". Journal of Nanoscience and Nanotechnology 8, n.º 9 (1 de setembro de 2008): 4630–34. http://dx.doi.org/10.1166/jnn.2008.ic50.
Texto completo da fonteEcheverry, Carlos A., Alexis Tigreros, Alejandro Ortiz, Braulio Insuasty e Nazario Martín. "Free-base tetraarylporphyrin covalently linked to [60]fullerene through ethynylfluorene spacer". Journal of Porphyrins and Phthalocyanines 15, n.º 11n12 (novembro de 2011): 1231–38. http://dx.doi.org/10.1142/s1088424611004257.
Texto completo da fonteHong, Daewha, Kyungtae Kang, Seok-Pyo Hong, Hyun Kyong Shon, Jin Gyeong Son, Tae Geol Lee e Insung S. Choi. "Electrochemical Release of Amine Molecules from Carbamate-Based, Electroactive Self-Assembled Monolayers". Langmuir 28, n.º 1 (2 de dezembro de 2011): 17–21. http://dx.doi.org/10.1021/la203420h.
Texto completo da fonteYamamoto, Yohei. "Programmed self-assembly of largeπ-conjugated molecules into electroactive one-dimensional nanostructures". Science and Technology of Advanced Materials 13, n.º 3 (13 de junho de 2012): 033001. http://dx.doi.org/10.1088/1468-6996/13/3/033001.
Texto completo da fontePineda Flores, Sergio D., Geoffrey C. Martin-Noble, Richard L. Phillips e Joshua Schrier. "Bio-Inspired Electroactive Organic Molecules for Aqueous Redox Flow Batteries. 1. Thiophenoquinones". Journal of Physical Chemistry C 119, n.º 38 (16 de setembro de 2015): 21800–21809. http://dx.doi.org/10.1021/acs.jpcc.5b05346.
Texto completo da fonteGorman, Christopher B., Brandon L. Parkhurst, Wendy Y. Su e Kang-Yi Chen. "Encapsulated Electroactive Molecules Based upon an Inorganic Cluster Surrounded by Dendron Ligands". Journal of the American Chemical Society 119, n.º 5 (fevereiro de 1997): 1141–42. http://dx.doi.org/10.1021/ja963541q.
Texto completo da fonteZhang, Jie, He Liu, Yan Zhang, Bo Fu, Chao Zhang, Minhua Cui, Ping Wu e Chongjun Chen. "Enhanced CO2 Reduction by Electron Shuttle Molecules via Coupling Different Electron Transport Processes in Microbial Electrosynthesis". Fermentation 9, n.º 7 (19 de julho de 2023): 679. http://dx.doi.org/10.3390/fermentation9070679.
Texto completo da fonteKitamura, An, e Christian Malapit. "Enabling Two-Electron Redox Systems for Energy-Dense Organic-Based Flow Batteries". ECS Meeting Abstracts MA2024-02, n.º 9 (22 de novembro de 2024): 1266. https://doi.org/10.1149/ma2024-0291266mtgabs.
Texto completo da fonteKim, Pankyu, Hyeongkwon Moon e Jun Hui Park. "Electrochemical Detection of Surfactant-Encapsulated Aqueous Nanodroplets in Organic Solution". Chemosensors 11, n.º 2 (3 de fevereiro de 2023): 112. http://dx.doi.org/10.3390/chemosensors11020112.
Texto completo da fonteJiao, Jieying, Miao Yu, Dewey Holten, Jonathan S. Lindsey e David F. Bocian. "Characterization of Hydroporphyrins Covalently Attached to Si(100)". Journal of Porphyrins and Phthalocyanines 21, n.º 07n08 (julho de 2017): 453–64. http://dx.doi.org/10.1142/s1088424617500547.
Texto completo da fonteKonev, Dmitry V., Olga I. Istakova e Mikhail A. Vorotyntsev. "Electrochemical Measurement of Interfacial Distribution and Diffusion Coefficients of Electroactive Species for Ion-Exchange Membranes: Application to Br2/Br− Redox Couple". Membranes 12, n.º 11 (26 de outubro de 2022): 1041. http://dx.doi.org/10.3390/membranes12111041.
Texto completo da fonteMagaldi, Diego, Maria Ulfa, Sébastien Péralta, Fabrice Goubard, Thierry Pauporté e Thanh-Tuân Bui. "Carbazole Electroactive Amorphous Molecular Material: Molecular Design, Synthesis, Characterization and Application in Perovskite Solar Cells". Energies 13, n.º 11 (5 de junho de 2020): 2897. http://dx.doi.org/10.3390/en13112897.
Texto completo da fonteDeng, Dehua, Yong Chang, Wenjing Liu, Mingwei Ren, Ning Xia e Yuanqiang Hao. "Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides". Biosensors 13, n.º 8 (29 de julho de 2023): 773. http://dx.doi.org/10.3390/bios13080773.
Texto completo da fonteMejías, Sara H., Javier López-Andarias, Tsuneaki Sakurai, Satoru Yoneda, Kevin P. Erazo, Shu Seki, Carmen Atienza, Nazario Martín e Aitziber L. Cortajarena. "Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state". Chemical Science 7, n.º 8 (2016): 4842–47. http://dx.doi.org/10.1039/c6sc01306f.
Texto completo da fonteSchmidt, Izabela, Jieying Jiao, David F. Bocian e Jonathan S. Lindsey. "A Bipodal-Tethered Porphyrin for Attachment to Silicon Surfaces in Studies of Molecular Information Storage". Journal of Nanoscience and Nanotechnology 8, n.º 9 (1 de setembro de 2008): 4813–17. http://dx.doi.org/10.1166/jnn.2008.ic85.
Texto completo da fonteMessmore, Benjamin W., James F. Hulvat, Eli D. Sone e Samuel I. Stupp. "Synthesis, Self-Assembly, and Characterization of Supramolecular Polymers from Electroactive Dendron Rodcoil Molecules". Journal of the American Chemical Society 126, n.º 44 (novembro de 2004): 14452–58. http://dx.doi.org/10.1021/ja049325w.
Texto completo da fonteSharma, Jadab, e Kunjukrishna P. Vijayamohanan. "Organic dye molecules as reducing agent for the synthesis of electroactive gold nanoplates". Journal of Colloid and Interface Science 298, n.º 2 (junho de 2006): 679–84. http://dx.doi.org/10.1016/j.jcis.2005.12.048.
Texto completo da fonteTendero, María José L., Angel Benito, Juan Cano, Jose Manuel Lloris, Ramón Martínez-Máñez, Juan Soto, Andrew J. Edwards, Paul R. Raithby e Moira A. Rennie. "Host molecules containing electroactive cavities obtained by the molecular assembly of redox-active ligands and metal ions". J. Chem. Soc., Chem. Commun., n.º 16 (1995): 1643–44. http://dx.doi.org/10.1039/c39950001643.
Texto completo da fonteBoubezari, Imane, Ali Zazoua, Abdelhamid Errachid e Nicole Jaffrezic-Renault. "Sensitive Electrochemical Detection of Bioactive Molecules (Hydrogen Peroxide, Glucose, Dopamine) with Perovskites-Based Sensors". Chemosensors 9, n.º 10 (12 de outubro de 2021): 289. http://dx.doi.org/10.3390/chemosensors9100289.
Texto completo da fonteSun, Yanmei, Li Li e Keying Shi. "Analog and Digital Bipolar Resistive Switching in Co–Al-Layered Double Hydroxide Memristor". Nanomaterials 10, n.º 11 (22 de outubro de 2020): 2095. http://dx.doi.org/10.3390/nano10112095.
Texto completo da fonteSikukuu Nambafu, Gabriel. "Organic molecules as bifunctional electroactive materials for symmetric redox flow batteries: A mini review". Electrochemistry Communications 127 (junho de 2021): 107052. http://dx.doi.org/10.1016/j.elecom.2021.107052.
Texto completo da fonteAckov, Renal B., Laurent Binet, Jean-Marc Fabre, Deborah J. Jones e Jacques Roziere. "Intercalation and Post-synthesis Oxidation of Basic Electroactive TTF-type Molecules in Zirconium Phosphate". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 311, n.º 1 (março de 1998): 239–44. http://dx.doi.org/10.1080/10587259808042392.
Texto completo da fonteShi, Gaoquan. "Matrix chain-length dependence of the electrochemistry of electroactive molecules in amorphous polymeric solvents". Journal of Physical Chemistry 96, n.º 11 (maio de 1992): 4677–79. http://dx.doi.org/10.1021/j100190a097.
Texto completo da fonteSandín, Pilar, Angeles Martínez-Grau, Luis Sánchez, Carlos Seoane, Rosendo Pou-Amérigo, Enrique Ortí e Nazario Martín. "The First Spiroconjugated TTF- and TCNQ-Type Molecules: A New Class of Electroactive Systems?" Organic Letters 7, n.º 2 (janeiro de 2005): 295–98. http://dx.doi.org/10.1021/ol047681d.
Texto completo da fonteChang, Yong, Jiaxin Lou, Luyao Yang, Miaomiao Liu, Ning Xia e Lin Liu. "Design and Application of Electrochemical Sensors with Metal–Organic Frameworks as the Electrode Materials or Signal Tags". Nanomaterials 12, n.º 18 (19 de setembro de 2022): 3248. http://dx.doi.org/10.3390/nano12183248.
Texto completo da fonteShanta, Aysha S., Khandakar A. Al Mamun, Syed K. Islam, Nicole McFarlane e Dale K. Hensley. "Carbon Nanotubes, Nanofibers and Nanospikes for Electrochemical Sensing: A Review". International Journal of High Speed Electronics and Systems 26, n.º 03 (27 de junho de 2017): 1740008. http://dx.doi.org/10.1142/s0129156417400080.
Texto completo da fonteYu, Zhang-Yu, De-Sheng Kong, Shu-Xin Wu, Lei Wang e Hanf-Qing Wang. "Electrocatalysis of a SiC particle-modified glassy carbon electrode for the oxidation of adrenaline in a KRPB physiological solution". Journal of the Serbian Chemical Society 70, n.º 5 (2005): 745–52. http://dx.doi.org/10.2298/jsc0505745y.
Texto completo da fonteGuo, Bingshu, Zhongai Hu, Yufeng An, Ning An, Pengfei Jia, Yadi Zhang, Yuying Yang e Zhimin Li. "Nitrogen-doped heterostructure carbon functionalized by electroactive organic molecules for asymmetric supercapacitors with high energy density". RSC Advances 6, n.º 46 (2016): 40602–14. http://dx.doi.org/10.1039/c6ra07923g.
Texto completo da fonte