Livros sobre o tema "Electrical resilience"

Siga este link para ver outros tipos de publicações sobre o tema: Electrical resilience.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 43 melhores livros para estudos sobre o assunto "Electrical resilience".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.

1

Afgan, Naim. Sustainable resilience of energy systems. Hauppauge, N.Y: Nova Science Publishers, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Afgan, Naim. Sustainable resilience of energy systems. New York: Nova Science Publishers, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Abi-Samra, Nicholas. Power grid resiliency for adverse conditions. Boston: Artech House, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Johnson, Anne Frances, ed. Communications, Cyber Resilience, and the Future of the U.S. Electric Power System. Washington, D.C.: National Academies Press, 2020. http://dx.doi.org/10.17226/25782.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bostan, Ion. Resilient Energy Systems: Renewables: Wind, Solar, Hydro. Dordrecht: Springer Netherlands, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kaplan, Stan Mark. Smart grid: Modernizing electric power transmission and distribution ; energy independence, storage and security ; energy independence and security act of 2007 (EISA) ; improving electrical grid efficiency, communication, reliability, and resiliency ; integrating new and renewable energy sources. Alexandria, VA: TheCapitol.Net, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

United States. Congress. House. Committee on Homeland Security. Subcommittee on Emerging Threats, Cybersecurity, and Science and Technology. Implications of cyber vulnerabilities on the resilience and security of the electric grid: Hearing before the Subcommittee on Emerging Threats, Cybersecurity, and Science and Technology of the Committee on Homeland Security, House of Representatives, One Hundred Tenth Congress, second session, May 21, 2008. Washington: U.S. G.P.O., 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Electric Power Systems Resiliency. Elsevier, 2022. http://dx.doi.org/10.1016/c2020-0-02601-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences e Committee on Enhancing the Resilience of the Nation's Electric Power Transmission and Distribution System. Enhancing the Resilience of the Nation's Electricity System. National Academies Press, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences e Committee on Enhancing the Resilience of the Nation's Electric Power Transmission and Distribution System. Enhancing the Resilience of the Nation's Electricity System. National Academies Press, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences e Committee on Enhancing the Resilience of the Nation's Electric Power Transmission and Distribution System. Enhancing the Resilience of the Nation's Electricity System. National Academies Press, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences e Committee on Enhancing the Resilience of the Nation's Electric Power Transmission and Distribution System. Enhancing the Resilience of the Nation's Electricity System. National Academies Press, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Haghifam, Mahmoud-Reza. Reliability and Resiliency in Electric Distribution Systems. Elsevier, 2021.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Bansal, Ramesh, e Manohar Mishra. Electric Power Systems Resiliency: Modelling, Opportunity and Challenges. Elsevier Science & Technology Books, 2022.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Bansal, Ramesh, Yog Raj Sood e Manohar Mishra. Electric Power Systems Resiliency: Modelling, Opportunity and Challenges. Elsevier Science & Technology, 2022.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Bizon, Nicu, Naser Mahdavi Tabatabaei e Sajad Najafi Ravadanegh. Power Systems Resilience: Modeling, Analysis and Practice. Springer, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bizon, Nicu, Naser Mahdavi Tabatabaei e Sajad Najafi Ravadanegh. Power Systems Resilience: Modeling, Analysis and Practice. Springer, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Narayanan, Anu, Debra Knopman, Kristin Van Abel, Benjamin Miller, Nicholas Burger, Martha Merrill, Alexander Rothenberg, Luke Muggy e Patrick Mills. Valuing Air Force Electric Power Resilience: A Framework for Mission-Level Investment Prioritization. RAND Corporation, 2019. http://dx.doi.org/10.7249/rr2771.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Burger, Nicholas, Debra Knopman, Anu Narayanan, Kristin Van Abel e Benjamin M. Miller. Valuing Air Force Electric Power Resilience: A Framework for Mission-Level Investment Prioritization. RAND Corporation, The, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Congress, United St, United States House of Representatives e Committee on Homeland Security and Export Controls. Implications of Cyber Vulnerabilities on the Resilience and Security of the Electric Grid. Independently Published, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Office, The Stationery. The Resilience Of The Electricity System: House Of Lords Paper 121 Session 2014-15. The Stationery Office, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Board on Energy and Environmental Systems, National Research Council, Division on Engineering and Physical Sciences, David W. Cooke e Planning Committee for the Workshop on the Resilience of the Electric Power System to Terrorism and Natural Disasters. Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters: Summary of a Workshop. National Academies Press, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters. Washington, D.C.: National Academies Press, 2013. http://dx.doi.org/10.17226/18535.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Board on Energy and Environmental Systems, National Research Council, Division on Engineering and Physical Sciences, David W. Cooke e Planning Committee for the Workshop on the Resilience of the Electric Power System to Terrorism and Natural Disasters. Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters: Summary of a Workshop. National Academies Press, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Board on Energy and Environmental Systems, National Research Council, Division on Engineering and Physical Sciences, David W. Cooke e Planning Committee for the Workshop on the Resilience of the Electric Power System to Terrorism and Natural Disasters. Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters: Summary of a Workshop. National Academies Press, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Board on Energy and Environmental Systems, National Research Council, Division on Engineering and Physical Sciences, David W. Cooke e Planning Committee for the Workshop on the Resilience of the Electric Power System to Terrorism and Natural Disasters. Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters: Summary of a Workshop. National Academies Press, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Fox-Penner, Peter. Power after Carbon: Building a Clean, Resilient Grid. Harvard University Press, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Fox-Penner, Peter. Power after Carbon: Building a Clean, Resilient Grid. Harvard University Press, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Silvast, Antti. Making Electricity Resilient: Risk and Security in a Liberalized Infrastructure. Taylor & Francis Group, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Silvast, Antti. Making Electricity Resilient: Risk and Security in a Liberalized Infrastructure. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Silvast, Antti. Making Electricity Resilient: Risk and Security in a Liberalized Infrastructure. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Silvast, Antti. Making Electricity Resilient: Risk and Security in a Liberalized Infrastructure. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Anne Frances Johnson e Committee on the Future of Electric Power in the U.S. Communications, Cyber Resilience, and the Future of the U. S. Electric Power System: Proceedings of a Workshop. National Academies Press, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Anne Frances Johnson e Committee on the Future of Electric Power in the U.S. Communications, Cyber Resilience, and the Future of the U. S. Electric Power System: Proceedings of a Workshop. National Academies Press, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Anne Frances Johnson e Committee on the Future of Electric Power in the U.S. Communications, Cyber Resilience, and the Future of the U. S. Electric Power System: Proceedings of a Workshop. National Academies Press, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Board on Energy and Environmental Systems, National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Anne Frances Johnson e Committee on the Future of Electric Power in the U.S. Communications, Cyber Resilience, and the Future of the U. S. Electric Power System: Proceedings of a Workshop. National Academies Press, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Marija D. Ilić. Toward a Unified Modeling and Control for Sustainable and Resilient Electric Energy Systems. Now Publishers, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Great Britain: Department of Energy and Climate Change. Government Response to the House of Lords Science and Technology Committee Inquiry: The Resilience of the Electricity System. Stationery Office, The, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Camarinha-Matos, Luis M., Kankam O. Adu-Kankam e Mohammad Julashokri. Technological Innovation for Resilient Systems: 9th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, ... and Communication Technology ). Springer, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Camarinha-Matos, Luis M., Kankam O. Adu-Kankam e Mohammad Julashokri. Technological Innovation for Resilient Systems: 9th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, ... and Communication Technology ). Springer, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Government, U. S., Director of National Intelligence, U. S. Army, Central Intelligence Agency (CIA) e Strategic Studies Institute. Military Planning for a Catastrophic Critical Infrastructure Event - in the Dark, Terminal Blackout: Electric Infrastructure Vulnerabilities and Civil-Military Resiliency, EMP. Independently Published, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Datta, Debasish. Optical Networks. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834229.001.0001.

Texto completo da fonte
Resumo:
This book presents an in-depth deliberation on optical networks in four parts, capturing the past, present, and ensuing developments in the field. Part I has two chapters presenting an overview of optical networks and the enabling technologies. Part II has three chapters dealing with the single-wavelength optical networks: optical LANs/MANs, optical access networks using passive optical network architecture, SONET/SDH, optical transport network and resilient packet ring. Part III consists of four chapters on WDM-based optical networks, including WDM-based local/metropolitan networks (LANs/MANs) using single and multihop architectures over passive-star couplers, WDM/TWDM access networks as an extension of PONs with WDM transmission, WDM metro ring networks covering circuit-switched (using point-to-point WDM and wavelength-routed transmission) plus packet-switched architectures and WDM long-haul backbone networks presenting the offline and online design methodologies using wavelength-routed transmission. Part IV deals with some selected topics in six chapters. The first deals with transmission impairments and power-consumption issues in optical networks, while the next three chapters deal with the survivable optical networks, network control and management techniques, including GMPLS, ASON, and SDN/SDON, and datacenter networks using electrical, optical, and hybrid switching techniques. The final two chapters present elastic optical networks using flexible grid for better utilization of the optical-fiber spectrum and optical packet and burst-switched networks. The three appendices present the basics of the linear programming techniques, noise processes encountered in the optical communication systems, and the fundamentals of queuing theory and its applications in telecommunication networks. (238 words)
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Brown, Marilyn A., e Yu Wang. Green Savings. ABC-CLIO, LLC, 2015. http://dx.doi.org/10.5040/9798400659362.

Texto completo da fonte
Resumo:
This landmark work lauds the benefits of decreased energy consumption, investigating its relationship to public policy and analyzing its potential billion-dollar benefits to the U.S. economy. U.S. consumers tend to use energy indiscriminately?something they may no longer be able to do with impunity. This game-changing book asserts that reducing energy consumption should be a frontline strategy to address global climate change, threats to energy security, and the challenge of grid reliability. The book supports two bold arguments: that policies motivating greater investment in high energy efficiency should be a priority, and that energy efficiency can help the nation in times of crisis. To make their case for the necessity of prioritizing demand reduction, the authors examine the policies and markets operating in a number of leading cities, states, and nations across the globe to uncover the keys to their success. These examples show how demand-side strategies can significantly reduce pollution, cut costs, and make the electric grid more resilient. The authors explain why these technologies are not widely adopted and assess the potential savings they can produce. The book will be an eye-opener for policymakers, energy professionals, and the public as it demonstrates how cost-effective demand reduction policies can improve air quality, strengthen electricity markets, and generate jobs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia