Artigos de revistas sobre o tema "Electric power systems – Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electric power systems – Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ruiz Florez, Hugo A., Gloria P. López, Álvaro Jaramillo-Duque, Jesús M. López-Lezama e Nicolás Muñoz-Galeano. "A Mathematical Modeling Approach for Power Flow and State Estimation Analysis in Electric Power Systems through AMPL". Electronics 11, n.º 21 (1 de novembro de 2022): 3566. http://dx.doi.org/10.3390/electronics11213566.
Texto completo da fonteVikharev, D. Yu, e N. A. Rodin. "Model of implicit pole electric machine based on mathematical formulation of magnetic field in air gap". Vestnik IGEU, n.º 6 (28 de dezembro de 2021): 27–37. http://dx.doi.org/10.17588/2072-2672.2021.6.027-037.
Texto completo da fonteBitimanova, Saltanat Serikbaevna, e Asel Asylbekovna Abdildaeva. "Algorithm for optimal control of electric power systems". Bulletin of Toraighyrov University. Energetics series, n.º 4.2020 (17 de dezembro de 2020): 78–91. http://dx.doi.org/10.48081/wddo6475.
Texto completo da fonteMehta, U., R. Prasad e K. Kothari. "VARIOUS ANALYTICAL MODELS FOR SUPERCAPACITORS: A MATHEMATICAL STUDY". Resource-Efficient Technologies, n.º 1 (9 de maio de 2020): 1–15. http://dx.doi.org/10.18799/24056537/2020/1/218.
Texto completo da fonteManusov, Vadim, e Javod Ahyoev. "Technical Diagnostics of Electric Equipment with the Use of Fuzzy Logic Models". Applied Mechanics and Materials 792 (setembro de 2015): 324–29. http://dx.doi.org/10.4028/www.scientific.net/amm.792.324.
Texto completo da fonteIakubovsky, Dmitry, Dmitry Krupenev e Denis Boyarkin. "A minimization model of the power shortage of electric power systems with regard to the restrictions on controlled sections". Analysis and data processing systems, n.º 2 (18 de junho de 2021): 95–120. http://dx.doi.org/10.17212/2782-2001-2021-2-95-120.
Texto completo da fonteBebikhov, Yuriy Vladimirovich, Dar'ya Vital'yevna Kazazaeva, Vasiliy Vasil'yevich Fedotov e Il'ya Anatol'yevich Yakushev. "DESIGN AND DEVELOPMENT OF MATHEMATICAL MODELS OF ELECTRIC POWER SYSTEMS OF INDUSTRIAL ENTERPRISES". Materials. Technologies. Design 4, n.º 2 (2022): 5–13. http://dx.doi.org/10.54708/26587572_2022_4285.
Texto completo da fontePopov, Denis I. "Mathematical modeling of electric power processes in integrated test benches with dc machines operating on the principle of mutual load". Yugra State University Bulletin 18, n.º 2 (7 de agosto de 2022): 61–67. http://dx.doi.org/10.18822/byusu20220261-67.
Texto completo da fonteSHEINA, G. "Analysis of mathematical models of transmission lines." Journal of Electrical and power engineering 23, n.º 2 (23 de dezembro de 2020): 16–19. http://dx.doi.org/10.31474/2074-2630-2020-2-16-19.
Texto completo da fonteShornikov, Yury, e Evgeny Popov. "Modeling and simulation of transients in electric power systems using hybrid system theory". ITM Web of Conferences 24 (2019): 02012. http://dx.doi.org/10.1051/itmconf/20192402012.
Texto completo da fonteReymov, K. M., G. M. Turmanova, S. K. Makhmuthonov e B. A. Uzakov. "Mathematical models and algorithms of optimal load management of electrical consumers". E3S Web of Conferences 216 (2020): 01166. http://dx.doi.org/10.1051/e3sconf/202021601166.
Texto completo da fonteFlorez, Hugo A. R., Diogo Marujo, Gloria P. López, Jesús M. López-Lezama e Nicolás Muñoz-Galeano. "State Estimation in Electric Power Systems Using an Approach Based on a Weighted Least Squares Non-Linear Programming Modeling". Electronics 10, n.º 20 (19 de outubro de 2021): 2560. http://dx.doi.org/10.3390/electronics10202560.
Texto completo da fonteYu Mikaelian, E., e M. A. Trubicin. "The electric substations compensating devices’ distribution optimization". Journal of Physics: Conference Series 2131, n.º 4 (1 de dezembro de 2021): 042072. http://dx.doi.org/10.1088/1742-6596/2131/4/042072.
Texto completo da fontePulatov, Behzod, e Shanazarov Alisher. "Optimization of modes of the electric power systems by genetic algorithms". E3S Web of Conferences 216 (2020): 01099. http://dx.doi.org/10.1051/e3sconf/202021601099.
Texto completo da fonteProdan, Dan, Anca Bucuresteanu, Adrian Motomancea e Emilia Balan. "Decrease in Power Consumption of Hydraulic Systems of Modern Machine Tools". Applied Mechanics and Materials 811 (novembro de 2015): 45–49. http://dx.doi.org/10.4028/www.scientific.net/amm.811.45.
Texto completo da fonteNa, Liu. "MATHEMATICAL MODELING OF HYBRID VEHICLE’S RECUPERATION BRAKING MODE". Management of Development of Complex Systems, n.º 44 (30 de novembro de 2020): 182–87. http://dx.doi.org/10.32347/2412-9933.2020.44.182-187.
Texto completo da fonteIakubovskii, Dmitrii, e Dmitry Krupenev. "Analysis power shortage minimization methods in the modern processing software for adequacy assessment of electric power systems". E3S Web of Conferences 209 (2020): 06008. http://dx.doi.org/10.1051/e3sconf/202020906008.
Texto completo da fonteShemelova, O. V., E. V. Yakovleva, T. G. Makuseva, I. I. Eremina e O. N. Makusev. "Solving optimization problems when designing power supply circuits". E3S Web of Conferences 124 (2019): 04011. http://dx.doi.org/10.1051/e3sconf/201912404011.
Texto completo da fonteMaximov, Serguei, Manuel A. Corona-Sánchez, Juan C. Olivares-Galvan, Enrique Melgoza-Vazquez, Rafael Escarela-Perez e Victor M. Jimenez-Mondragon. "Mathematical Calculation of Stray Losses in Transformer Tanks with a Stainless Steel Insert". Mathematics 9, n.º 2 (18 de janeiro de 2021): 184. http://dx.doi.org/10.3390/math9020184.
Texto completo da fonteRezaeva, M. A., e R. Y. Semendyaev. "Development and Application of Convolutional Neural Network for the Recognition of Objects in the Scheme of Electric Grid". Journal of Physics: Conference Series 2096, n.º 1 (1 de novembro de 2021): 012020. http://dx.doi.org/10.1088/1742-6596/2096/1/012020.
Texto completo da fonteVivas, Eliana, Héctor Allende-Cid e Rodrigo Salas. "A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score". Entropy 22, n.º 12 (15 de dezembro de 2020): 1412. http://dx.doi.org/10.3390/e22121412.
Texto completo da fonteBulatov, Yuri, Andrey Kryukov e Aleksandr Cherepanov. "Mathematical models for determining limit operating modes in electrical networks with distributed generation plants". Science Bulletin of the Novosibirsk State Technical University, n.º 4 (18 de dezembro de 2020): 17–36. http://dx.doi.org/10.17212/1814-1196-2020-4-17-36.
Texto completo da fonteCamargo, José Rui, Jamir Machado da Silva, Ederaldo Godoy Junior, Renan Eduardo da Silva, Luiz Eduardo Nicolini do Patrocínio Nunes e Fabio Silva Rezende. "Direct Thermoelectric Microgeneration Using Residual Heat of Photovoltaic System". Advanced Materials Research 608-609 (dezembro de 2012): 97–113. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.97.
Texto completo da fonteMills, V. D., e J. R. Wagner. "Behavioural modelling and analysis of hybrid vehicle steering systems". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, n.º 5 (1 de maio de 2003): 349–61. http://dx.doi.org/10.1243/095440703321645061.
Texto completo da fonteSidorov, Denis, Fang Liu e Yonghui Sun. "Machine Learning for Energy Systems". Energies 13, n.º 18 (10 de setembro de 2020): 4708. http://dx.doi.org/10.3390/en13184708.
Texto completo da fonteKrupenev, Dmitry, Denis Boyarkin e Dmitrii Iakubovskii. "Research of mathematical models for minimizing power shortage with quadratic losses in power lines and with using network coefficients (sensitivity coefficients)". E3S Web of Conferences 216 (2020): 01009. http://dx.doi.org/10.1051/e3sconf/202021601009.
Texto completo da fonteDe Pinto, Stefano, e Giacomo Mantriota. "Power Flows in Compound Transmissions for Hybrid Vehicles". Machines 7, n.º 1 (15 de março de 2019): 19. http://dx.doi.org/10.3390/machines7010019.
Texto completo da fonteMotovilov, A. I., e I. I. Solovejev. "Online electric network capacity assesment". Power engineering: research, equipment, technology 22, n.º 3 (8 de setembro de 2020): 51–59. http://dx.doi.org/10.30724/1998-9903-2020-22-3-51-59.
Texto completo da fonteObukhov, S. G., G. N. Klimova e A. Ibrahim. "Methodology of optimum unit commitment of energy systems with renewable energy sources". Vestnik IGEU, n.º 6 (28 de dezembro de 2020): 25–38. http://dx.doi.org/10.17588/2072-2672.2020.6.025-038.
Texto completo da fontePlakhtyna, O., A. Kutsyk e A. Lozynskyy. "Method of average voltages in integration step: theory and application". Electrical Engineering 102, n.º 4 (22 de junho de 2020): 2413–22. http://dx.doi.org/10.1007/s00202-020-01039-x.
Texto completo da fonteVasiliev, Igor, Boris Kiforenko e Yaroslav Tkachenko. "COMPARATIVE ANALYSIS OF THE EFFICIENCY OF CONSTANT POWER THROTTLED ROCKET ENGINES FOR INTERORBITAL FLIGHTS TO GEOSTATIONAR". Journal of Automation and Information sciences 6 (1 de novembro de 2021): 66–77. http://dx.doi.org/10.34229/1028-0979-2021-6-7.
Texto completo da fonteNigim, K. A., M. M. A. Salama e M. Kazerani. "Solving Polynomial Algebraic Equations of the Stand Alone Induction Generator". International Journal of Electrical Engineering & Education 40, n.º 1 (janeiro de 2003): 45–54. http://dx.doi.org/10.7227/ijeee.40.1.5.
Texto completo da fonteIakubovskii, D. V., D. S. Krupenev e D. A. Boyarkin. "Application the differential evolution for solving the problem of minimizing the power shortage of electric power systems". E3S Web of Conferences 114 (2019): 03002. http://dx.doi.org/10.1051/e3sconf/201911403002.
Texto completo da fonteSeheda, M. S., P. F. Gogolyuk e Y. V. Blyznak. "High-frequency periodic processes in two-winding power transformers". Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, n.º 6 (2021): 96–100. http://dx.doi.org/10.33271/nvngu/2021-6/096.
Texto completo da fonteSolodyankin, Sergey, e Andrey Pazderin. "Increase of Transient Stability Level of Gas Turbine Power Plant Using FACTS". E3S Web of Conferences 139 (2019): 01049. http://dx.doi.org/10.1051/e3sconf/201913901049.
Texto completo da fonteSafaryan, V. S. "STUDY OF TRANSIENT AND STATIONARY OPERATION MODES OF SYNCHRONOUS SYSTEM CONSISTING IN TWO MACHINES". ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 60, n.º 3 (17 de maio de 2017): 228–36. http://dx.doi.org/10.21122/1029-7448-2017-60-3-228-236.
Texto completo da fonteMishchenko, T. M. "Methodology and Models of Combined Modeling of Electromagnetic Pro-cesses in Electric Traction Systems". Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, n.º 2(92) (15 de abril de 2021): 40–49. http://dx.doi.org/10.15802/stp2021/237404.
Texto completo da fontePeng, Huiming, G. Maksim Popov, Feng Li e Zhiyu Lu. "Dynamic Identification of Equivalent Parameters of Mathematical Models of Power Electrical Equipment of Electromechanical Power Systems". Journal of Physics: Conference Series 2166, n.º 1 (1 de janeiro de 2022): 012024. http://dx.doi.org/10.1088/1742-6596/2166/1/012024.
Texto completo da fonteShevchenko, S. Yu, D. O. Danylchenko, S. Yu Bilyk, A. E. Potryvai e G. A. Kovtun. "Considering the effect of dustiness of a photovoltaic module surfaces on solar power generation by matlab software". Electrical Engineering and Power Engineering, n.º 4 (30 de dezembro de 2021): 28–35. http://dx.doi.org/10.15588/1607-6761-2021-4-5.
Texto completo da fonteChervonchenko, S. S., e V. Ya Frolov. "Research of the operation of an autonomous electrical complex with a combined composition of backup power sources". Power engineering: research, equipment, technology 24, n.º 4 (17 de agosto de 2022): 90–104. http://dx.doi.org/10.30724/1998-9903-2022-24-4-90-104.
Texto completo da fonteGianto, Rudy. "Constant Voltage Model of DFIG-Based Variable Speed Wind Turbine for Load Flow Analysis". Energies 14, n.º 24 (18 de dezembro de 2021): 8549. http://dx.doi.org/10.3390/en14248549.
Texto completo da fonteLI, SHAO-HUA, e HSIAO-DONG CHIANG. "STRUCTURE-INDUCED BIFURCATION IN LARGE-SCALE ELECTRIC POWER SYSTEMS". International Journal of Bifurcation and Chaos 18, n.º 05 (maio de 2008): 1415–24. http://dx.doi.org/10.1142/s0218127408021075.
Texto completo da fonteHo, Kun-Che, Yi-Hua Liu, Song-Pei Ye, Guan-Jhu Chen e Yu-Shan Cheng. "Mathematical Modeling and Performance Evaluation of Switched-Capacitor-Based Battery Equalization Systems". Electronics 10, n.º 21 (27 de outubro de 2021): 2629. http://dx.doi.org/10.3390/electronics10212629.
Texto completo da fonteWang, Hong, e Feng Chun Sun. "Dynamic Modeling and Simulation on a Hybrid Power System for Dual-Motor-Drive Electric Tracked Bulldozer". Applied Mechanics and Materials 494-495 (fevereiro de 2014): 229–33. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.229.
Texto completo da fontePulatov, B. "OPTIMIZATION OF MODES OF ELECTR POWER SYSTEMS BY GENETIC ALGOROTHMS". Technical science and innovation 2019, n.º 3 (18 de setembro de 2019): 224–29. http://dx.doi.org/10.51346/tstu-01.19.3.-77-0030.
Texto completo da fonteZhou, Xiaohang, Jian Liu, Mozhi Ding, Huating Zhu, Mingqi Xu e Qinmiao Li. "Combined optimization of electric heater-heat tank aggregation for wind curtailment". Journal of Physics: Conference Series 2351, n.º 1 (1 de outubro de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2351/1/012008.
Texto completo da fonteBatsala, Ya V., I. V. Hlad, I. I. Yaremak e O. I. Kiianiuk. "Mathematical model for forecasting the process of electric power generation by photoelectric stations". Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, n.º 1 (2021): 111–16. http://dx.doi.org/10.33271/nvngu/2021-1/111.
Texto completo da fonteBaran, P., Y. Varetsky, V. Kidyba e Y. Pryshliak. "A mathematical model for the virtual simulator of the power unit electrical part". IOP Conference Series: Materials Science and Engineering 1216, n.º 1 (1 de janeiro de 2022): 012009. http://dx.doi.org/10.1088/1757-899x/1216/1/012009.
Texto completo da fontePlakhtyna, Omelyan, Andriy Kutsyk e Mykola Semeniuk. "Real-Time Models of Electromechanical Power Systems, Based on the Method of Average Voltages in Integration Step and Their Computer Application". Energies 13, n.º 9 (4 de maio de 2020): 2263. http://dx.doi.org/10.3390/en13092263.
Texto completo da fonteVereshchago, Yevhen, e Vitalii Kostiuchenko. "Modeling of welding arc power supply diagrams in Matlab / Simulink". Electrical Engineering and Power Engineering, n.º 3 (30 de setembro de 2021): 8–20. http://dx.doi.org/10.15588/1607-6761-2021-3-1.
Texto completo da fonte