Literatura científica selecionada sobre o tema "Electric power systems – Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Electric power systems – Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Electric power systems – Mathematical models"
Ruiz Florez, Hugo A., Gloria P. López, Álvaro Jaramillo-Duque, Jesús M. López-Lezama e Nicolás Muñoz-Galeano. "A Mathematical Modeling Approach for Power Flow and State Estimation Analysis in Electric Power Systems through AMPL". Electronics 11, n.º 21 (1 de novembro de 2022): 3566. http://dx.doi.org/10.3390/electronics11213566.
Texto completo da fonteVikharev, D. Yu, e N. A. Rodin. "Model of implicit pole electric machine based on mathematical formulation of magnetic field in air gap". Vestnik IGEU, n.º 6 (28 de dezembro de 2021): 27–37. http://dx.doi.org/10.17588/2072-2672.2021.6.027-037.
Texto completo da fonteBitimanova, Saltanat Serikbaevna, e Asel Asylbekovna Abdildaeva. "Algorithm for optimal control of electric power systems". Bulletin of Toraighyrov University. Energetics series, n.º 4.2020 (17 de dezembro de 2020): 78–91. http://dx.doi.org/10.48081/wddo6475.
Texto completo da fonteMehta, U., R. Prasad e K. Kothari. "VARIOUS ANALYTICAL MODELS FOR SUPERCAPACITORS: A MATHEMATICAL STUDY". Resource-Efficient Technologies, n.º 1 (9 de maio de 2020): 1–15. http://dx.doi.org/10.18799/24056537/2020/1/218.
Texto completo da fonteManusov, Vadim, e Javod Ahyoev. "Technical Diagnostics of Electric Equipment with the Use of Fuzzy Logic Models". Applied Mechanics and Materials 792 (setembro de 2015): 324–29. http://dx.doi.org/10.4028/www.scientific.net/amm.792.324.
Texto completo da fonteIakubovsky, Dmitry, Dmitry Krupenev e Denis Boyarkin. "A minimization model of the power shortage of electric power systems with regard to the restrictions on controlled sections". Analysis and data processing systems, n.º 2 (18 de junho de 2021): 95–120. http://dx.doi.org/10.17212/2782-2001-2021-2-95-120.
Texto completo da fonteBebikhov, Yuriy Vladimirovich, Dar'ya Vital'yevna Kazazaeva, Vasiliy Vasil'yevich Fedotov e Il'ya Anatol'yevich Yakushev. "DESIGN AND DEVELOPMENT OF MATHEMATICAL MODELS OF ELECTRIC POWER SYSTEMS OF INDUSTRIAL ENTERPRISES". Materials. Technologies. Design 4, n.º 2 (2022): 5–13. http://dx.doi.org/10.54708/26587572_2022_4285.
Texto completo da fontePopov, Denis I. "Mathematical modeling of electric power processes in integrated test benches with dc machines operating on the principle of mutual load". Yugra State University Bulletin 18, n.º 2 (7 de agosto de 2022): 61–67. http://dx.doi.org/10.18822/byusu20220261-67.
Texto completo da fonteSHEINA, G. "Analysis of mathematical models of transmission lines." Journal of Electrical and power engineering 23, n.º 2 (23 de dezembro de 2020): 16–19. http://dx.doi.org/10.31474/2074-2630-2020-2-16-19.
Texto completo da fonteShornikov, Yury, e Evgeny Popov. "Modeling and simulation of transients in electric power systems using hybrid system theory". ITM Web of Conferences 24 (2019): 02012. http://dx.doi.org/10.1051/itmconf/20192402012.
Texto completo da fonteTeses / dissertações sobre o assunto "Electric power systems – Mathematical models"
Altamirano, Chavez Armando. "An efficient algorithm using Householder's formulas for the solution of faulted power systems". Thesis, Kansas State University, 1986. http://hdl.handle.net/2097/9896.
Texto completo da fonteWang, Yuanzhe, e 王远哲. "Macromodeling, passivity enforcement and fast simulation/verification for interconnects, power grids and large circuits". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46604376.
Texto completo da fonteLandford, Jordan. "Event Detection Using Correlation within Arrays of Streaming PMU Data". PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3031.
Texto completo da fonteHall, David Eric. "Transient thermal models for overhead current-carrying hardware". Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/17133.
Texto completo da fonteLi, Xiaojuan. "Estimations of power system frequency, phasors and their applications for fault location on power transmission lines". University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0125.
Texto completo da fonteKhosravi-Dehkordi, Iman. "Load flow feasibility under extreme contingencies". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100252.
Texto completo da fonteDenoting the load flow equations by z = f(x) where z is the vector of specified injections (the real and reactive bus demands, the specified real power bus generations and the specified bus voltage levels), the question addressed is whether there exists a real solution x to z = f( x) where x is the vector of unknown bus voltage magnitudes at load buses and unknown bus voltage phase angles at all buses but the reference bus. Attacking this problem via conventional load flow algorithms has a major drawback, principally the fact that such algorithms do not converge when the load flow injections z define or are close to defining an infeasible load flow. In such cases, lack of convergence may be due to load flow infeasibility or simply to the ill-conditioning of the load flow Jacobian matrix.
This thesis therefore makes use of the method of supporting hyperplanes to characterize the load flow feasibility region, defined as the set the injections z for which there exists a real solution x to the load flow equations. Supporting hyperplanes allow us to calculate the so-called load flow feasibility margin, which determines whether a given injection is feasible or not as well as measuring how close the injection is to the feasibility boundary. This requires solving a generalized eigenvalue problem and a corresponding optimization for the closest feasible boundary point to the given injection.
The effect of extreme network contingencies on the feasibility of a given injection is examined for two main cases: those contingencies that affect the feasibility region such as line outages and those that change the given injection itself such as an increase in VAR demand or the loss of a generator. The results show that the hyperplane method is a powerful tool for analyzing the effect of extreme contingencies on the feasibility of a power network.
Al-Gobaisi, Darwish M. K. F. "Economic scheduling in electric power systems : a mathematical model for the U.A.E". Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/7288.
Texto completo da fonteWang, Minnan, e 王旻楠. "Islanding of systems of distributed generation using optimization methodology". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44914933.
Texto completo da fonteLiu, Xinghua, e 刘兴华. "Power system operation integrating clean energy and environmental considerations". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085866.
Texto completo da fonteUong, Hoang. "The application of the ordered list method and the dynamic programming to the unit commitment". PDXScholar, 1989. https://pdxscholar.library.pdx.edu/open_access_etds/3948.
Texto completo da fonteLivros sobre o assunto "Electric power systems – Mathematical models"
Computational methods for electric power systems. 2a ed. Boca Raton: CRC Press, 2010.
Encontre o texto completo da fonteCrow, Mariesa. Computational methods for electric power systems. 2a ed. Boca Raton, FLA: CRC Press, 2010.
Encontre o texto completo da fonteComputational methods for electric power systems. Boca Raton, FL: CRC Press, 2003.
Encontre o texto completo da fonteA, Soliman S., ed. Optimal long-term operation of electric power systems. New York: Plenum Press, 1988.
Encontre o texto completo da fonteJ, Arrillaga, ed. Power system harmonic analysis. Chichester: Wiley, 1997.
Encontre o texto completo da fonteAnders, George J., e Alfredo Vaccaro. Innovations in power systems reliability. London: Springer, 2011.
Encontre o texto completo da fontePardalos, P. M. Handbook of Power Systems I. Heidelberg: Springer, 2010.
Encontre o texto completo da fonteAnderson, P. M. Subsynchronous resonance in power systems. New York: IEEE Press, 1990.
Encontre o texto completo da fonteMomoh, James A. Electric power system applications of optimization. 2a ed. Boca Raton: Taylor & Francis, 2008.
Encontre o texto completo da fonteElectric power system applications of optimization. New York: Marcel Dekker, 2001.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Electric power systems – Mathematical models"
Hobbs, Benjamin F., e Richard E. Schuler. "Evaluation of Electric Power Deregulation Using Network Models of Oligopolistic Spatial Markets". In Lecture Notes in Economics and Mathematical Systems, 208–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-46548-2_9.
Texto completo da fonteGhassemi, Afshin, Laura Soares, Hao Wang e Zhimin Xi. "A Novel Mathematical Model for Infrastructure Planning of Dynamic Wireless Power Transfer Systems for Electric Vehicles". In Handbook of Smart Energy Systems, 1–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72322-4_99-1.
Texto completo da fonteCutsem, Thierry, e Costas Vournas. "Mathematical Background". In Voltage Stability of Electric Power Systems, 137–73. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-0-387-75536-6_5.
Texto completo da fonteBaldick, Ross. "Computing the Electricity Market Equilibrium: Uses of Market Equilibrium Models". In Restructured Electric Power Systems, 139–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470608555.ch4.
Texto completo da fonteRezinkina, Marina M., Yevgen I. Sokol, Artur O. Zaporozhets, Oleg G. Gryb, Ihor T. Karpaliuk e Sergiy V. Shvets. "Mathematical Models of Electric Fields of Electric Transmission Lines". In Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs), 79–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69752-5_5.
Texto completo da fonteYao, Jian, Shmuel S. Oren e Benjamin F. Hobbs. "Hybrid Bertrand-Cournot Models of Electricity Markets with Multiple Strategic Subnetworks and Common Knowledge Constraints". In Restructured Electric Power Systems, 167–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470608555.ch5.
Texto completo da fonteLu, Qiang, Yuanzhang Sun e Shengwei Mei. "Basic Mathematical Descriptions for Electric Power Systems". In Nonlinear Control Systems and Power System Dynamics, 165–98. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3312-9_5.
Texto completo da fonteMagdziarz, Andrzej, e Zbigniew Zagan. "Mathematical simulation model of power transformer for electrical power system protective schemes". In System Modelling and Optimization, 567–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0043881.
Texto completo da fonteChristensen, G. S., e S. A. Soliman. "Mathematical Optimization Techniques". In Optimal Long-Term Operation of Electric Power Systems, 9–30. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5493-2_2.
Texto completo da fonteDenysiuk, Serhii, Denys Derevianko e Halyna Bielokha. "Synthesis of Models of the Complex Electric Power Systems". In Power Systems Research and Operation, 107–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17554-1_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Electric power systems – Mathematical models"
Andreev, Mikhail, Alexander Gusev, Almaz Sulaymanov e Yury Borovikov. "Setting of relay protection of electric power systems using its mathematical models". In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2017. http://dx.doi.org/10.1109/isgteurope.2017.8260093.
Texto completo da fonteBebikhov, Yuriy V., Darya V. Kazazaeva e Ilya A. Yakushev. "Designing and Developing Mathematical Models for the Electric Power Systems of Industrial Companies". In 2022 International Russian Automation Conference (RusAutoCon). IEEE, 2022. http://dx.doi.org/10.1109/rusautocon54946.2022.9896300.
Texto completo da fonteValiev, Rustam, Sergey Gusev e Vladislav Oboskalov. "Mathematical models and optimal load shedding strategies for power system generation adequacy problem". In 2017 14th International Conference on Engineering of Modern Electric Systems (EMES). IEEE, 2017. http://dx.doi.org/10.1109/emes.2017.7980377.
Texto completo da fonteVantsevich, Vladimir V., Jesse R. Paldan e Jeremy P. Gray. "A Hybrid-Electric Power Transmitting Unit for 4x4 Vehicle Applications: Modeling and Simulation". In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5855.
Texto completo da fonteTrancossi, Michele, e Mauro Madonia. "The Efficiency of an Electric Turbofan vs. Inlet Area: A Simple Mathematical Model and CFD Simulations". In SAE 2012 Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2012. http://dx.doi.org/10.4271/2012-01-2217.
Texto completo da fonteScoba, A. N., V. K. Mikhaylov e A. N. Panfilov. "Mathematical Models for Determining the Reliability Characteristics of Distributed Information Processing Systems in the Electric Power Industry". In 2020 International Russian Automation Conference (RusAutoCon). IEEE, 2020. http://dx.doi.org/10.1109/rusautocon49822.2020.9208193.
Texto completo da fonteSerebryakov, Artem, Alexey Steklov e Damir Kocheganov. "Neural Network Model to Diagnose Stand-alone Electric Power System". In 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). IEEE, 2021. http://dx.doi.org/10.1109/summa53307.2021.9632229.
Texto completo da fonteKocheganov, Damir, Artem Serebryakov e Alexey Steklov. "Wind-Solar Electric Power System Simulation Model with Equipment Condition Assessment System". In 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). IEEE, 2020. http://dx.doi.org/10.1109/summa50634.2020.9280613.
Texto completo da fonteFreund, Mary K., Es’hagh Farzaneh Joubaneh, Oumar R. Barry e Emad Y. Tanbour. "Study of Vibration of Electric Power Steering Systems Using a Continuous System Model". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70755.
Texto completo da fonteNikolov, Nikola, e Dimo Stoilov. "Comparison of the conductors' mechanical mode calculations using different mathematical models". In 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA). IEEE, 2017. http://dx.doi.org/10.1109/elma.2017.7955460.
Texto completo da fonteRelatórios de organizações sobre o assunto "Electric power systems – Mathematical models"
Modlo, Yevhenii O., Serhiy O. Semerikov, Ruslan P. Shajda, Stanislav T. Tolmachev e Oksana M. Markova. Methods of using mobile Internet devices in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], julho de 2020. http://dx.doi.org/10.31812/123456789/3878.
Texto completo da fonteLittle, Charles, e David Biedenharn. Technical assessment of the Old, Mississippi, Atchafalaya, and Red (OMAR) Rivers : channel geometry analysis. Engineer Research and Development Center (U.S.), agosto de 2022. http://dx.doi.org/10.21079/11681/45147.
Texto completo da fonteRusk, Todd, Ryan Siegel, Linda Larsen, Tim Lindsey e Brian Deal. Technical and Financial Feasibility Study for Installation of Solar Panels at IDOT-owned Facilities. Illinois Center for Transportation, agosto de 2021. http://dx.doi.org/10.36501/0197-9191/21-024.
Texto completo da fonte