Literatura científica selecionada sobre o tema "Effect of temperature on weeds"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Effect of temperature on weeds".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Effect of temperature on weeds"
Monks, C. Dale, David W. Monks, Tom Basden, Arthur Selders, Suzanne Poland e Edward Rayburn. "Soil Temperature, Soil Moisture, Weed Control, and Tomato (Lycopersicon esculentum) Response to Mulching". Weed Technology 11, n.º 3 (setembro de 1997): 561–66. http://dx.doi.org/10.1017/s0890037x00045425.
Texto completo da fonteAziz, Fahrurrozi, e Katrine A. Stewart. "EFFECT OF SPECTRAL QUALITIES OF PLASTIC MULCH ON WEED DEVELOPMENT AND GROWTH". HortScience 29, n.º 4 (abril de 1994): 251c—251. http://dx.doi.org/10.21273/hortsci.29.4.251c.
Texto completo da fonteKumar, Vipin, Annu Kumari, Andrew J. Price, Ram Swaroop Bana, Vijay Singh e Shanti Devi Bamboriya. "Impact of Futuristic Climate Variables on Weed Biology and Herbicidal Efficacy: A Review". Agronomy 13, n.º 2 (15 de fevereiro de 2023): 559. http://dx.doi.org/10.3390/agronomy13020559.
Texto completo da fonteWright, Shawn R., Harold D. Coble, C. David Raper e Thomas W. Rufty. "Comparative responses of soybean (Glycine max), sicklepod (Senna obtusifolia), and Palmer amaranth (Amaranthus palmeri) to root zone and aerial temperatures". Weed Science 47, n.º 2 (abril de 1999): 167–74. http://dx.doi.org/10.1017/s004317450009158x.
Texto completo da fontePark, Hyun-Hwa, Do-Jin Lee e Yong-In Kuk. "Effects of Various Environmental Conditions on the Growth of Amaranthus patulus Bertol. and Changes of Herbicide Efficacy Caused by Increasing Temperatures". Agronomy 11, n.º 9 (3 de setembro de 2021): 1773. http://dx.doi.org/10.3390/agronomy11091773.
Texto completo da fonteKirigiah, Richard, Masinde Peter e Mworia G. Erick. "Effect of Plastic Mulch Color and Transplanting Stage on Baby Corn Plant Performance". European Journal of Agriculture and Food Sciences 4, n.º 5 (20 de outubro de 2022): 103–11. http://dx.doi.org/10.24018/ejfood.2022.4.5.567.
Texto completo da fonteTremmel, D. C., e D. T. Patterson. "Effects of elevated CO2 and temperature on development in soybean and five weeds". Canadian Journal of Plant Science 74, n.º 1 (1 de janeiro de 1994): 43–50. http://dx.doi.org/10.4141/cjps94-009.
Texto completo da fonteMartinez-Ghersa, Maria A., Emilio H. Satorre e Claudio M. Ghersa. "Effect of soil water content and temperature on dormancy breaking and germination of three weeds". Weed Science 45, n.º 6 (dezembro de 1997): 791–97. http://dx.doi.org/10.1017/s0043174500088986.
Texto completo da fonteSwanton, Clarence J., Jian Zhong Huang, William Deen, Matthijs Tollenaar, Anil Shrestha e Hamid Rahimian. "Effects of temperature and photoperiod onSetaria viridis". Weed Science 47, n.º 4 (agosto de 1999): 446–53. http://dx.doi.org/10.1017/s0043174500092067.
Texto completo da fonteWEAVER, S. E., C. S. TAN e P. BRAIN. "EFFECT OF TEMPERATURE AND SOIL MOISTURE ON TIME OF EMERGENCE OF TOMATOES AND FOUR WEED SPECIES". Canadian Journal of Plant Science 68, n.º 3 (1 de julho de 1988): 877–86. http://dx.doi.org/10.4141/cjps88-105.
Texto completo da fonteTeses / dissertações sobre o assunto "Effect of temperature on weeds"
Omami, Elizabeth Nabwile, of Western Sydney Hawkesbury University, of Agriculture Horticulture and Social Ecology Faculty e School of Horticulture. "Amaranthus retroflexus seed dormancy and germination responses to environmental factors and chemical stimulants". THESIS_FAHSE_HOR_Omami_E.xml, 1993. http://handle.uws.edu.au:8081/1959.7/66.
Texto completo da fonteMaster of Science (Hons)
Omami, Elizabeth Nabwile. "Amaranthus retroflexus seed dormancy and germination responses to environmental factors and chemical stimulants". Thesis, [S.l. : s.n.], 1993. http://handle.uws.edu.au:8081/1959.7/66.
Texto completo da fonteSuryani, Titik. "The effects of temperature, hours of leaf wetness, age of giant foxtail (setaria faberi herrm.), and host specificity of phoma sp. as a biological herbicide". Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941362.
Texto completo da fonteDepartment of Biology
Antill, Marc. "The effect of repair welds on the high temperature low cycle fatigue behaviour of nickel base superalloy turbine blades". Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297923.
Texto completo da fontePline, Wendy Ann. "Effect of Temperature and Chemical Additives on the Efficacy of the Herbicides Glufosinate and Glyphosate in Weed Management of Liberty-Link and Roundup-Ready Soybeans". Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/31699.
Texto completo da fonteMaster of Science
Virbickait-Staniulienė, Rasa. "The impact of high-temperature environment on weeds highly resistant to thermal killing". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101214_140738-85437.
Texto completo da fonteDarbo tikslas – nustatyti aukštatemperatūrės aplinkos poveikį sunkiai termiškai sunaikinamoms piktžolėms. Terminei piktžolių kontrolei naudojant drėgną vandens garą, ne visos piktžolės vienodai reaguoja į terminį poveikį. Termiškai sunaikinus antžeminę dalį, atskiros piktžolių rūšys po kurio laiko atželia. Išnagrinėjus piktžolių morfologinę sandarą ir piktžolių jautrumą drėgnam vandens garui, galima piktžoles suskirstyti į tris grupes: lengvai termiškai sunaikinamos, sunkiai termiškai sunaikinamos (miglinės ir skrotelinės piktžolės) ir labai sunkiai termiškai sunaikinamos piktžolės. Terminėje piktžolių kontrolėje didelę problemą kelia sunkiai termiškai sunaikinamos piktžolės. Suvėlinus šių piktžolių terminę kontrolę, piktžolės stelbia žemės ūkio augalus, patiriami derliaus nuostoliai. Norint tobulinti piktžolių terminės kontrolės technologiją teko įvertinti aukštatemperatūrės aplinkos parametrus, sunkiai termiškai sunaikinamų piktžolių morfologinę sandarą, piktžolių augimo ir vystymosi tarpsnius, piktžolių lapų oro tarpsluoksnių įtaką aukštatemperatūrio lauko plitimui į gilesnius audinius, piktžolių lapų posvyrio kampo įtaką terminei kontrolei. Šiame darbe yra nagrinėjama minėtų veiksnių įtaka sunkiai termiškai sunaikinamų piktžolių kontrolei, bei siūlomos sprendimo priemonės formuojant aukštatemperatūrę aplinką efektyvesnei terminei piktžolių kontrolei drėgnuoju vandens garu.
Umeda, Kai. "Effect of Halosulfuron on Rotational Crops". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2002. http://hdl.handle.net/10150/214957.
Texto completo da fonteUmeda, K., e N. Lund. "Effect of Prowl and Prefar Herbicides on Onions". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2001. http://hdl.handle.net/10150/214935.
Texto completo da fonteFillmore, Andrew Nathan. "Droplet Size Effect on Herbicide Used in Cereals to Control Dicotyledonous Weeds". Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27419.
Texto completo da fonteHewitt, Cade Alan. "Effect of row spacing and seeding rate on grain sorghum tolerance of weeds". Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19784.
Texto completo da fonteDepartment of Agronomy
J. A. Dille
Weed control in grain sorghum has always presented a challenge to producers in the semi-arid Great Plains. Cultural control tactics such as narrowing of row spacings and increasing seeding rates can be effective control methods. The objective of this research was to determine the row spacing and seeding rates that maximizes yield while suppressing weeds. Grain sorghum row spacings of 25, 51, and 76-cm and seeding rates of 75,000, 100,000, 125,000, and 150,000 seeds ha[superscript]-1 were evaluated in Kansas at Beloit and Manhattan in 2013 and Beloit, Manhattan, and Hays in 2014. Grain sorghum growth and yield response were measured in response to natural weed communities. After evaluation, Beloit was considered a low weed pressure site while Manhattan and Hays were considered to be moderate and high weed pressure sites, respectively. Grain sorghum biomass was different while weed biomass was consistent across row spacings. Yield loss equations and profit functions were derived to determine the amount of grain yield and $ ha[superscript]-1 loss from each of the three locations. Yield and profit lost was greatest amongst weedy observations. Results indicated that grain sorghum grown on wide row spacings and seeding rates of 125,000 seeds ha[superscript]-1 out yielded all other treatments under a low weed pressure site (Beloit) and narrow row spacings out yielded wider spacings in moderate and high weed pressure sites (Manhattan and Hays). These results imply that a Kansas grain sorghum producer should evaluate potential weed pressure before determining a final row spacing and seeding rate.
Livros sobre o assunto "Effect of temperature on weeds"
Hansson, David. Hot water weed control on hard surface areas. Alnarp: Swedish University of Agricultural Sciences, 2002.
Encontre o texto completo da fonteHamada, Azhari Abdelazim. Investigations on the germination requirements and competitive effects of weeds: A case study of the Rahad Scheme in the Sudan. Weikersheim [Germany]: Josef Margraf, 1992.
Encontre o texto completo da fonteMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1993.
Encontre o texto completo da fonteMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1993.
Encontre o texto completo da fonteMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1993.
Encontre o texto completo da fonteMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1999.
Encontre o texto completo da fonteMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1999.
Encontre o texto completo da fonteHarań, Grzegorz. Impurity effect in high temperature superconductors. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2001.
Encontre o texto completo da fonteFranklin, Keara A., e Philip A. Wigge. Temperature and plant development. Ames, Iowa USA: Wiley Blackwell, 2014.
Encontre o texto completo da fonteRitter, Ronald Lloyd. Understanding herbicide resistance in weeds. Des Plaines, Ill: Sandoz Crop Protection Corp., 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Effect of temperature on weeds"
Marques, Severino P. C., e Guillermo J. Creus. "Temperature Effect". In Computational Viscoelasticity, 51–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25311-9_6.
Texto completo da fonteZhang, Guigen. "Temperature Effect". In Bulk and Surface Acoustic Waves, 257–71. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003256625-7.
Texto completo da fonteAlderliesten, René. "Effect of Temperature". In Fatigue and Fracture of Fibre Metal Laminates, 253–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56227-8_11.
Texto completo da fonteBrown, R. P. "Effect of temperature". In Physical Testing of Rubber, 235–58. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0529-3_15.
Texto completo da fonteBrown, Roger. "Effect of Temperature". In Physical Test Methods for Elastomers, 305–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66727-0_21.
Texto completo da fonteFerrell, Richard A. "The Josephson Effect". In High Temperature Superconductivity, 60–83. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3222-3_3.
Texto completo da fonteOka, Yoshiaki. "Temperature Effect of Reactivity". In Nuclear Reactor Kinetics and Plant Control, 23–33. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54195-0_3.
Texto completo da fonteWen, Shengmin. "Temperature Effect on Fatigue". In Encyclopedia of Tribology, 3538–40. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_281.
Texto completo da fonteShur, M., e M. A. Khan. "GaN-based field effect transistors". In High Temperature Electronics, 297–320. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1197-3_10.
Texto completo da fonteSaha, Biswanath, Heena Kauser, Meena Khwairakpam e Ajay S. Kalamdhad. "Effect and Management of Various Terrestrial Weeds—Review". In Lecture Notes in Civil Engineering, 231–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0990-2_17.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Effect of temperature on weeds"
Dai, H., R. J. Moat e P. J. Withers. "Modelling the Interpass Temperature Effect on Residual Stress in Low Transformation Temperature Stainless Steel Welds". In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57329.
Texto completo da fontede Barbadillo, John J., Brian A. Baker e Xishan Xie. "Microstructure Stability of Alloy 740H and its Effect on Material Properties". In ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/etam2014-1000.
Texto completo da fonteBandara, R. M. U. S., T. K. Ilangakoon, H. M. M. K. K. H. Dissanayaka, Y. M. S. H. I. U. De Silva, C. H. Piyasiri e D. M. C. B. Dissanayaka. "EFFECT OF ELEVATED TEMPERATURE ON WEED SEED GERMINATION IN PADDY SOIL SEED BANK". In International Conference on Agriculture and Forestry. The International Institute of Knowledge Management (TIIKM), 2018. http://dx.doi.org/10.17501/icoaf.2017.3103.
Texto completo da fonteRonevich, Joseph A., Chris San Marchi e Dorian K. Balch. "Temperature Effects on Fracture Thresholds of Hydrogen Precharged Stainless Steel Welds". In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65603.
Texto completo da fonteTrevisan, R. E., N. F. Santos, H. C. Fals e A. A. Santos. "Effect of Interpass Temperature on Morphology, Microstructure and Microhardness of Welded API 5L X65 Steel". In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27112.
Texto completo da fonteDodge, Michael, Lars Magne Haldorsen, Mike Gittos e Kasra Sotoudeh. "Effect of Temperature on Resistance to Hydrogen Embrittlement of Dissimilar Metal Welds Subjected to SENB and SENT Testing". In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79852.
Texto completo da fonteAndresen, Peter L., e Martin M. Morra. "Effect of Rising and Falling K Profiles on SCC Growth Rates in High Temperature Water". In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71643.
Texto completo da fonteTanaka, Tomohiro, Masamitsu Abe, Mitsuyoshi Nakatani e Hidenori Terasaki. "Effect of Postweld Heat Treatment Conditions on Mechanical Properties of 9Cr-1Mo-V Steel Welds for Pressure Vessel". In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65320.
Texto completo da fonteSiefert, J., J. Parker e J. Foulds. "Effect of PWHT on the Fracture Toughness and Burst Test Response of Grade 91 Tube Weldments". In ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/etam2018-6714.
Texto completo da fonteNarayanan, Badri K., e Jon Ogborn. "Effect of Strain Ageing on Mechanical Properties of Pipeline Girth Welds". In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49818.
Texto completo da fonteRelatórios de organizações sobre o assunto "Effect of temperature on weeds"
VanderGheynst, Jean, Michael Raviv, Jim Stapleton e Dror Minz. Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health. United States Department of Agriculture, outubro de 2013. http://dx.doi.org/10.32747/2013.7594388.bard.
Texto completo da fonteSamach, Alon, Douglas Cook e Jaime Kigel. Molecular mechanisms of plant reproductive adaptation to aridity gradients. United States Department of Agriculture, janeiro de 2008. http://dx.doi.org/10.32747/2008.7696513.bard.
Texto completo da fonteNathan, Harms, e Cronin James. Variability in weed biological control : effects of foliar nitrogen on larval development and dispersal of the alligatorweed flea beetle, Agasicles hygrophila. Engineer Research and Development Center (U.S.), setembro de 2021. http://dx.doi.org/10.21079/11681/41886.
Texto completo da fonteYahav, Shlomo, John Brake e Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, setembro de 2009. http://dx.doi.org/10.32747/2009.7592120.bard.
Texto completo da fonteNanstad, R. K., G. M. Goodwin e M. J. Swindeman. Effects of nonstandard heat treatment temperatures on tensile and Charpy impact properties of carbon-steel casting repair welds. Office of Scientific and Technical Information (OSTI), abril de 1993. http://dx.doi.org/10.2172/10144288.
Texto completo da fonteSawatzky, H., I. Clelland e J. Houde. Effect of topping temperature on Cold Lake asphalt's susceptibility to temperature. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/304486.
Texto completo da fonteCheng, Juei-Teng, e Lowell E. Wenger. Josephson Effect Research in High-Temperature Superconductors. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1988. http://dx.doi.org/10.21236/ada201483.
Texto completo da fonteKorinko, P. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR. Office of Scientific and Technical Information (OSTI), março de 2011. http://dx.doi.org/10.2172/1025512.
Texto completo da fonteSun, W. D., Fred H. Pollak, Patrick A. Folkes e Godfrey A. Gumbs. Band-Bending Effect of Low-Temperature GaAs on a Pseudomorphic Modulation-Doped Field-Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, março de 1999. http://dx.doi.org/10.21236/ada361412.
Texto completo da fontePrice, J. T., J. F. Gransden, M. A. Khan e B. D. Ryan. Effect of selected minerals on high temperature properties of coke. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/304533.
Texto completo da fonte