Literatura científica selecionada sobre o tema "EEG/MEG data"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "EEG/MEG data".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "EEG/MEG data"
Litvak, Vladimir, Jérémie Mattout, Stefan Kiebel, Christophe Phillips, Richard Henson, James Kilner, Gareth Barnes et al. "EEG and MEG Data Analysis in SPM8". Computational Intelligence and Neuroscience 2011 (2011): 1–32. http://dx.doi.org/10.1155/2011/852961.
Texto completo da fonteGramfort, Alexandre, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck, Lauri Parkkonen e Matti S. Hämäläinen. "MNE software for processing MEG and EEG data". NeuroImage 86 (fevereiro de 2014): 446–60. http://dx.doi.org/10.1016/j.neuroimage.2013.10.027.
Texto completo da fonteHong, J., e S. C. Jun. "Single-trial Analysis for MEG/EEG spatiotemporal data". NeuroImage 47 (julho de 2009): S145. http://dx.doi.org/10.1016/s1053-8119(09)71470-3.
Texto completo da fonteMaris, Eric, e Robert Oostenveld. "Nonparametric statistical testing of EEG- and MEG-data". Journal of Neuroscience Methods 164, n.º 1 (agosto de 2007): 177–90. http://dx.doi.org/10.1016/j.jneumeth.2007.03.024.
Texto completo da fonteGjini, Klevest, Susan M. Bowyer, Frank Wang e Nash N. Boutros. "Deficit Versus Nondeficit Schizophrenia: An MEG-EEG Investigation of Resting State and Source Coherence—Preliminary Data". Clinical EEG and Neuroscience 51, n.º 1 (4 de agosto de 2019): 34–44. http://dx.doi.org/10.1177/1550059419867561.
Texto completo da fonteZhang, Junpeng, Sarang S. Dalal, Srikantan S. Nagarajan e Dezhong Yao. "COHERENT MEG/EEG SOURCE LOCALIZATION IN TRANSFORMED DATA SPACE". Biomedical Engineering: Applications, Basis and Communications 22, n.º 05 (outubro de 2010): 351–65. http://dx.doi.org/10.4015/s1016237210002110.
Texto completo da fonteJas, Mainak, Denis A. Engemann, Yousra Bekhti, Federico Raimondo e Alexandre Gramfort. "Autoreject: Automated artifact rejection for MEG and EEG data". NeuroImage 159 (outubro de 2017): 417–29. http://dx.doi.org/10.1016/j.neuroimage.2017.06.030.
Texto completo da fonteTrujillo-Barreto, N. J., E. Martínez-Montes, P. A. Valdés-Sosa e L. Melie-García. "Bayesian model for EEG/MEG and fMRI data fusion". NeuroImage 13, n.º 6 (junho de 2001): 270. http://dx.doi.org/10.1016/s1053-8119(01)91613-1.
Texto completo da fonteRoś, Beata P., Fetsje Bijma, Mathisca C. M. de Gunst e Jan C. de Munck. "A three domain covariance framework for EEG/MEG data". NeuroImage 119 (outubro de 2015): 305–15. http://dx.doi.org/10.1016/j.neuroimage.2015.06.020.
Texto completo da fonteKozinska, D., F. Carducci e K. Nowinski. "Automatic alignment of EEG/MEG and MRI data sets". Clinical Neurophysiology 112, n.º 8 (agosto de 2001): 1553–61. http://dx.doi.org/10.1016/s1388-2457(01)00556-9.
Texto completo da fonteTeses / dissertações sobre o assunto "EEG/MEG data"
Zaremba, Wojciech. "Modeling the variability of EEG/MEG data through statistical machine learning". Habilitation à diriger des recherches, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00803958.
Texto completo da fonteMolins, Jiménez Antonio. "Multimodal integration of EEG and MEG data using minimum ℓ₂-norm estimates". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40528.
Texto completo da fonteIncludes bibliographical references (leaves 69-74).
The aim of this thesis was to study the effects of multimodal integration of electroencephalography (EEG) and magnetoencephalography (MEG) data on the minimum ℓ₂-norm estimates of cortical current densities. We investigated analytically the effect of including EEG recordings in MEG studies versus the addition of new MEG channels. To further confirm these results, clinical datasets comprising concurrent MEG/EEG acquisitions were analyzed. Minimum ℓ₂-norm estimates were computed using MEG alone, EEG alone, and the combination of the two modalities. Localization accuracy of responses to median-nerve stimulation was evaluated to study the utility of combining MEG and EEG.
by Antonio Molins Jiménez.
S.M.
Papadopoulo, Théodore. "Contributions and perspectives to computer vision, image processing and EEG/MEG data analysis". Habilitation à diriger des recherches, Université Nice Sophia Antipolis, 2011. http://tel.archives-ouvertes.fr/tel-00847782.
Texto completo da fonteZavala, Fernandez Heriberto. "Evaluation and comparsion of the independent components of simultaneously measured MEG and EEG data /". Berlin : Univ.-Verl. der TU, 2009. http://www.ub.tu-berlin.de/index.php?id=2260#c9917.
Texto completo da fonteAblin, Pierre. "Exploration of multivariate EEG /MEG signals using non-stationary models". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT051.
Texto completo da fonteIndependent Component Analysis (ICA) models a set of signals as linear combinations of independent sources. This analysis method plays a key role in electroencephalography (EEG) and magnetoencephalography (MEG) signal processing. Applied on such signals, it allows to isolate interesting brain sources, locate them, and separate them from artifacts. ICA belongs to the toolbox of many neuroscientists, and is a part of the processing pipeline of many research articles. Yet, the most widely used algorithms date back to the 90's. They are often quite slow, and stick to the standard ICA model, without more advanced features.The goal of this thesis is to develop practical ICA algorithms to help neuroscientists. We follow two axes. The first one is that of speed. We consider the optimization problems solved by two of the most widely used ICA algorithms by practitioners: Infomax and FastICA. We develop a novel technique based on preconditioning the L-BFGS algorithm with Hessian approximation. The resulting algorithm, Picard, is tailored for real data applications, where the independence assumption is never entirely true. On M/EEG data, it converges faster than the `historical' implementations.Another possibility to accelerate ICA is to use incremental methods, which process a few samples at a time instead of the whole dataset. Such methods have gained huge interest in the last years due to their ability to scale well to very large datasets. We propose an incremental algorithm for ICA, with important descent guarantees. As a consequence, the proposed algorithm is simple to use and does not have a critical and hard to tune parameter like a learning rate.In a second axis, we propose to incorporate noise in the ICA model. Such a model is notoriously hard to fit under the standard non-Gaussian hypothesis of ICA, and would render estimation extremely long. Instead, we rely on a spectral diversity assumption, which leads to a practical algorithm, SMICA. The noise model opens the door to new possibilities, like finer estimation of the sources, and use of ICA as a statistically sound dimension reduction technique. Thorough experiments on M/EEG datasets demonstrate the usefulness of this approach.All algorithms developed in this thesis are open-sourced and available online. The Picard algorithm is included in the largest M/EEG processing Python library, MNE and Matlab library, EEGlab
Abbasi, Omid [Verfasser], Georg [Gutachter] Schmitz e Markus [Gutachter] Butz. "Retrieving neurophysiological information from strongly distorted EEG and MEG data / Omid Abbasi ; Gutachter: Georg Schmitz, Markus Butz". Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1140223119/34.
Texto completo da fonteDubarry, Anne-Sophie. "Linking neurophysiological data to cognitive functions : methodological developments and applications". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5017.
Texto completo da fonteA major issue in Cognitive Psychology is to describe human cognitive functions. From the Neuroscientific perceptive, measurements of brain activity are collected and processed in order to grasp, at their best resolution, the relevant spatio-temporal features of the signal that can be linked with cognitive operations. The work of this thesis consisted in designing and implementing strategies in order to overcome spatial and temporal limitations of signal processing procedures used to address cognitive issues. In a first study we demonstrated that the distinction between picture naming classical temporal organizations serial-parallel, should be addressed at the level of single trials and not on the averaged signals. We designed and conducted the analysis of SEEG signals from 5 patients to show that the temporal organization of picture naming involves a parallel processing architecture to a limited degree only. In a second study, we combined SEEG, EEG and MEG into a simultaneous trimodal recording session. A patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. Averaged activities at the sensor level were shown to be consistent across the three techniques. More importantly a fine-grained coupling between the amplitudes of the three recording techniques is detected at the level of single evoked responses. This thesis proposes various relevant methodological and conceptual developments. It opens up several perspectives in which neurophysiological signals shall better inform Cognitive Neuroscientific theories
Ewald, Arne Verfasser], Klaus-Robert [Akademischer Betreuer] [Müller, Andreas [Akademischer Betreuer] Daffertshofer e Guido [Akademischer Betreuer] Nolte. "Novel multivariate data analysis techniques to determine functionally connected networks within the brain from EEG or MEG data / Arne Ewald. Gutachter: Klaus-Robert Müller ; Andreas Daffertshofer ; Guido Nolte". Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387773/34.
Texto completo da fonteEwald, Arne [Verfasser], Klaus-Robert [Akademischer Betreuer] Müller, Andreas [Akademischer Betreuer] Daffertshofer e Guido [Akademischer Betreuer] Nolte. "Novel multivariate data analysis techniques to determine functionally connected networks within the brain from EEG or MEG data / Arne Ewald. Gutachter: Klaus-Robert Müller ; Andreas Daffertshofer ; Guido Nolte". Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387773/34.
Texto completo da fonteCarrara, Igor. "Méthodes avancées de traitement des BCI-EEG pour améliorer la performance et la reproductibilité de la classification". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4033.
Texto completo da fonteElectroencephalography (EEG) non-invasively measures the brain's electrical activity through electromagnetic fields generated by synchronized neuronal activity. This allows for the collection of multivariate time series data, capturing a trace of the brain electrical activity at the level of the scalp. At any given time instant, the measurements recorded by these sensors are linear combinations of the electrical activities from a set of underlying sources located in the cerebral cortex. These sources interact with one another according to a complex biophysical model, which remains poorly understood. In certain applications, such as surgical planning, it is crucial to accurately reconstruct these cortical electrical sources, a task known as solving the inverse problem of source reconstruction. While intellectually satisfying and potentially more precise, this approach requires the development and application of a subject-specific model, which is both expensive and technically demanding to achieve.However, it is often possible to directly use the EEG measurements at the level of the sensors and extract information about the brain activity. This significantly reduces the data analysis complexity compared to source-level approaches. These measurements can be used for a variety of applications, including monitoring cognitive states, diagnosing neurological conditions, and developing brain-computer interfaces (BCI). Actually, even though we do not have a complete understanding of brain signals, it is possible to generate direct communication between the brain and an external device using the BCI technology. This work is centered on EEG-based BCIs, which have several applications in various medical fields, like rehabilitation and communication for disabled individuals or in non-medical areas, including gaming and virtual reality.Despite its vast potential, BCI technology has not yet seen widespread use outside of laboratories. The primary objective of this PhD research is to try to address some of the current limitations of the BCI-EEG technology. Autoregressive models, even though they are not completely justified by biology, offer a versatile framework to effectively analyze EEG measurements. By leveraging these models, it is possible to create algorithms that combine nonlinear systems theory with the Riemannian-based approach to classify brain activity. The first contribution of this thesis is in this direction, with the creation of the Augmented Covariance Method (ACM). Building upon this foundation, the Block-Toeplitz Augmented Covariance Method (BT-ACM) represents a notable evolution, enhancing computational efficiency while maintaining its efficacy and versatility. Finally, the Phase-SPDNet work enables the integration of such methodologies into a Deep Learning approach that is particularly effective with a limited number of electrodes.Additionally, we proposed the creation of a pseudo online framework to better characterize the efficacy of BCI methods and the largest EEG-based BCI reproducibility study using the Mother of all BCI Benchmarks (MOABB) framework. This research seeks to promote greater reproducibility and trustworthiness in BCI studies.In conclusion, we address two critical challenges in the field of EEG-based brain-computer interfaces (BCIs): enhancing performance through advanced algorithmic development at the sensor level and improving reproducibility within the BCI community
Livros sobre o assunto "EEG/MEG data"
Giebels, Ludy. Jacob Israël de Haan in het Palestijnse labyrint, 1919-1924. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2024. http://dx.doi.org/10.5117/9789048563838.
Texto completo da fonteHari, MD, PhD, Riitta, e Aina Puce, PhD. MEG-EEG Primer. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190497774.001.0001.
Texto completo da fonteHamalainen, Matti, Risto Ilmoniemi e Lauri Parkkonen. Fundamentals of MEG and EEG: Biophysics, Instrumentation, and Data Analysis. Elsevier Science & Technology Books, 2020.
Encontre o texto completo da fonteButkov, Nic. Polysomnography. Editado por Sudhansu Chokroverty, Luigi Ferini-Strambi e Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0007.
Texto completo da fonteKam, Julia W. Y., e Todd C. Handy. Electroencephalogram Recording in Humans. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0006.
Texto completo da fonteSutter, Raoul, Peter W. Kaplan e Donald L. Schomer. Historical Aspects of Electroencephalography. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0001.
Texto completo da fonteThomas, James, e Tanya Monaghan. Clinical data interpretation. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199593972.003.0019.
Texto completo da fonteVanhatalo, Sampsa, e J. Matias Palva. Infraslow EEG Activity. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0032.
Texto completo da fonteOsman, Gamaleldin M., James J. Riviello e Lawrence J. Hirsch. EEG in the Intensive Care Unit. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0022.
Texto completo da fonteVespa, Paul M. Electroencephalogram monitoring in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0221.
Texto completo da fonteCapítulos de livros sobre o assunto "EEG/MEG data"
Iversen, John R., e Scott Makeig. "MEG/EEG Data Analysis Using EEGLAB". In Magnetoencephalography, 1–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-62657-4_8-1.
Texto completo da fonteIversen, John R., e Scott Makeig. "MEG/EEG Data Analysis Using EEGLAB". In Magnetoencephalography, 199–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-33045-2_8.
Texto completo da fonteIversen, John R., e Scott Makeig. "MEG/EEG Data Analysis Using EEGLAB". In Magnetoencephalography, 391–406. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00087-5_8.
Texto completo da fonteSorrentino, Alberto, e Michele Piana. "Inverse Modeling for MEG/EEG Data". In Mathematical and Theoretical Neuroscience, 239–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68297-6_15.
Texto completo da fonteSellers, Kristin K., Joline M. Fan, Leighton B. N. Hinkley e Heidi E. Kirsch. "Preprocessing Electrophysiological Data: EEG, iEEG, and MEG Data". In Statistical Methods in Epilepsy, 25–50. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003254515-2.
Texto completo da fontePflieger, M. E., G. V. Simpson, S. P. Ahlfors e R. J. Ilmoniemi. "Superadditive Information from Simultaneous MEG/EEG Data". In Biomag 96, 1154–57. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1260-7_282.
Texto completo da fontePitolli, Francesca. "Neuroelectric Current Localization from Combined EEG/MEG Data". In Curves and Surfaces, 562–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27413-8_37.
Texto completo da fonteLouis, Alfred K., Uwe Schmitt, Felix Darvas, Helmut Büchner e Manfred Fuchs. "Spatio-Temporal Current Density Reconstruction from EEG-/MEG-Data". In Mathematics — Key Technology for the Future, 472–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55753-8_38.
Texto completo da fonteEsch, Lorenz, Christoph Dinh, Eric Larson, Denis Engemann, Mainak Jas, Sheraz Khan, Alexandre Gramfort e Matti S. Hämäläinen. "MNE: Software for Acquiring, Processing,and Visualizing MEG/EEG Data". In Magnetoencephalography, 1–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-62657-4_59-1.
Texto completo da fonteEsch, Lorenz, Christoph Dinh, Eric Larson, Denis Engemann, Mainak Jas, Sheraz Khan, Alexandre Gramfort e M. S. Hämäläinen. "MNE: Software for Acquiring, Processing, and Visualizing MEG/EEG Data". In Magnetoencephalography, 355–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00087-5_59.
Texto completo da fonteTrabalhos de conferências sobre o assunto "EEG/MEG data"
Vlasenko, Daniil, Alexey Zaikin e Denis Zakharov. "Ensemble methods for representation of fMRI, EEG/MEG data in graph form for classification of brain states". In 2024 8th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 258–61. IEEE, 2024. http://dx.doi.org/10.1109/dcna63495.2024.10718443.
Texto completo da fonteCai, Chang, Mithun Diwakar, Kensuke Sekihara e Srikantan S. Nagarajan. "Robust Bayesian algorithm for distributed source reconstructions MEG/EEG data". In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716990.
Texto completo da fonteGramfort, Alexandre, e Maureen Clerc. "Low Dimensional Representations of MEG/EEG Data Using Laplacian Eigenmaps". In 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging. IEEE, 2007. http://dx.doi.org/10.1109/nfsi-icfbi.2007.4387717.
Texto completo da fonteNOLTE, G. "DETECTING AND LOCALIZING TRUE BRAIN INTERACTIONS FROM EEG/MEG DATA". In Proceedings of the Seventh International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773197_0036.
Texto completo da fonteArdila Franco, Camilo Ernesto, Jose David Lopez Hincapie e Jairo Jose Espinosa. "Neural activity reconstruction with MEG/EEG data considering noise regularization". In 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA). IEEE, 2012. http://dx.doi.org/10.1109/stsiva.2012.6340551.
Texto completo da fonteHuang, Gan, e Zhiguo Zhang. "Improving sensitivity of cluster-based permutation test for EEG/MEG data". In 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2017. http://dx.doi.org/10.1109/ner.2017.8008279.
Texto completo da fonteLopez, Jose David, Angela Sucerquia e Gareth Barnes. "Simultaneous estimation of brain structure and function with MEG/EEG data". In 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT). IEEE, 2017. http://dx.doi.org/10.1109/icieect.2017.7916582.
Texto completo da fonteBelaoucha, Brahim, e Theodore Papadopoulo. "Large brain effective network from EEG/MEG data and dMR information". In 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI). IEEE, 2017. http://dx.doi.org/10.1109/prni.2017.7981511.
Texto completo da fonteGutiérrez, David, Gerardo Herrera Corral e Luis Manuel Montaño Zentina. "Using EEG∕MEG Data of Cognitive Processes in Brain-Computer Interfaces". In MEDICAL PHYSICS: Tenth Mexican Symposium on Medical Physics. AIP, 2008. http://dx.doi.org/10.1063/1.2979300.
Texto completo da fonteJia, Wenyan, Robert J. Sclabassi, Lin-Sen Pon, Mark L. Scheuer e Mingui Sun. "Spike Separation from EEG/MEG Data Using Morphological Filter and Wavelet Transform". In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259695.
Texto completo da fonteRelatórios de organizações sobre o assunto "EEG/MEG data"
Mosher, J. C., M. Huang, R. M. Leahy e M. E. Spencer. Modeling versus accuracy in EEG and MEG data. Office of Scientific and Technical Information (OSTI), julho de 1997. http://dx.doi.org/10.2172/554813.
Texto completo da fonteVan der Maas, Peter, Jesse Wagenaar, Ilse Ubels e Anne Helbig. Circulair water in de wijk : verkennend onderzoek naar de potenties en belemmering van decentrale systemen voor behandeling en hergebruik van afvalwater en regenwater in woonwijken. Hogeschool van Hall Larenstein, junho de 2024. http://dx.doi.org/10.31715/2024.6.
Texto completo da fonteAgrawal, Asha Weinstein, Evelyn Blumenberg, Anastasia Loukaitou-Sideris e Brittney Lu. Understanding Workforce Diversity in the Transit Industry: Establishing a Baseline of Diversity Demographics. Mineta Transportation Institute, fevereiro de 2024. http://dx.doi.org/10.31979/mti.2024.2213.
Texto completo da fonteGuérin, Laurence, Patrick Sins, Lida Klaver e Juliette Walma van der Molen. Onderzoeksrapport Samen werken aan Bèta Burgerschap. Saxion, 2021. http://dx.doi.org/10.14261/ff0c6282-93e2-41a7-b60ab9bceb2a4328.
Texto completo da fonteBlankestijn, Wouter, Walter Verspui, Jan Fliervoet e Loes Witteveen. Motivaties rondom Tuinvergroening onderzoek Tuinverhalen : resultaten enquête onder deelnemers van het project Pientere Tuinen. Lectoraat Communicatie, Participatie & Sociaal-Ecologisch Leren (CoPSEL), janeiro de 2024. http://dx.doi.org/10.31715/2024.3.
Texto completo da fonteStrietman, W. J., M. J. van den Heuvel-Greve, A. M. van den Brink, G. A. de Groot, M. Skirtun, E. L. Bravo Rebolledo e K. J. Koffeman. Resultaten bronanalyse zwerfafval Griend : Resultaten van een gedetailleerde bronanalyse van zwerfafval dat op het Waddeneiland Griend verzameld is en samen met lokale stakeholders tijdens een Litter-ID-sessie in oktober 2019 onderzocht is. Wageningen: Wageningen Economic Research, 2020. http://dx.doi.org/10.18174/528599.
Texto completo da fonteNelson, Gena. A Systematic Review of the Quality of Reporting in Mathematics Meta-Analyses for Students with or at Risk of Disabilities Coding Protocol. Boise State University, julho de 2021. http://dx.doi.org/10.18122/sped138.boisestate.
Texto completo da fonteNelson, Gena. A Systematic Review of the Quality of Reporting in Mathematics Meta-Analyses for Students with or at Risk of Disabilities Coding Protocol. Boise State University, Albertsons Library, julho de 2021. http://dx.doi.org/10.18122/sped.138.boisestate.
Texto completo da fonteRupke, Andrew, e Taylor Boden. Lithium Brine Analytical Database of Utah: Second Edition. Utah Geological Survey, novembro de 2023. http://dx.doi.org/10.34191/ofr-758.
Texto completo da fonteSloan, Steven, Shelby Peterie, Richard Miller, Julian Ivanov, J. Schwenk e Jason McKenna. Detecting clandestine tunnels by using near-surface seismic techniques. Engineer Research and Development Center (U.S.), abril de 2021. http://dx.doi.org/10.21079/11681/40419.
Texto completo da fonte