Artigos de revistas sobre o tema "Dynamics of surfaces"

Siga este link para ver outros tipos de publicações sobre o tema: Dynamics of surfaces.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Dynamics of surfaces".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Wolf, M. "SURFACE SCIENCE:Electron Dynamics at Surfaces". Science 288, n.º 5470 (26 de maio de 2000): 1352–53. http://dx.doi.org/10.1126/science.288.5470.1352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Barza, Ilie, e Dorin Ghisa. "Dynamics of dianalytic transformations of Klein surfaces". Mathematica Bohemica 129, n.º 2 (2004): 129–40. http://dx.doi.org/10.21136/mb.2004.133904.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ludwig, W. "Dynamics at crystal surfaces, surface phonons". International Journal of Engineering Science 29, n.º 3 (janeiro de 1991): 345–61. http://dx.doi.org/10.1016/0020-7225(91)90154-u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Fang, Wei, Kaixuan Zhang, Qi Jiang, Cunjing Lv, Chao Sun, Qunyang Li, Yanlin Song e Xi-Qiao Feng. "Drop impact dynamics on solid surfaces". Applied Physics Letters 121, n.º 21 (21 de novembro de 2022): 210501. http://dx.doi.org/10.1063/5.0124256.

Texto completo da fonte
Resumo:
Drop impact on solid surfaces widely occurs both in nature and engineering. In this Perspective, we review the recent advances in experimental, theoretical, and numerical investigations of drop impact dynamics on solid surfaces. The relevant theoretical models and numerical methods, such as the wetting transition models and the volume-of-fluid method, are briefly described. The influences of key factors on the drop impact dynamics, and the underlying mechanisms of forces and energies, are examined. Especially, we analyze the contact time for a drop impacting on a solid surface and discuss the effective strategies to tune the dynamic impact behavior. The design principles of functional surfaces and some typical applications are also discussed. Finally, Perspectives are given on future development of the drop impact dynamics and its potential applications in diverse engineering fields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Machado, M., A. Eiguren, E. V. Chulkov e P. M. Echenique. "Surface state quasiparticle dynamics at metal surfaces". Journal of Electron Spectroscopy and Related Phenomena 129, n.º 2-3 (junho de 2003): 87–96. http://dx.doi.org/10.1016/s0368-2048(03)00055-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Andrade, J. D. "Polymers Have "Intelligent" Surfaces: Polymer Surface Dynamics". Journal of Intelligent Material Systems and Structures 5, n.º 5 (setembro de 1994): 612–18. http://dx.doi.org/10.1177/1045389x9400500503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Tully, J. C. "Dynamics at surfaces". Journal of Electron Spectroscopy and Related Phenomena 54-55 (janeiro de 1990): 1–4. http://dx.doi.org/10.1016/0368-2048(90)80195-g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sun, Ya Zhou, Yong Heng Li, Hai Tao Liu e Zong Shan Liu. "Experimental Study of Dynamic Properties of Mechanical Joint Surfaces". Advanced Materials Research 694-697 (maio de 2013): 181–85. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.181.

Texto completo da fonte
Resumo:
Dynamic properties of mechanical joint surfaces are researched, majorly contains the study of basic mechanism and factors affect the dynamic properties of joint surfaces. Equivalent stiffness and damp are analyzed. Orthogonal experiments are arranged in order to analyze the weight of every major factor that affects the joint surfaces dynamics. Two common materials HT200, 2Cr13 under different processing methods, surface roughness and surface areas are used.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Borisova, S. D., S. V. Eremeev, G. G. Rusina e E. V. Chulkov. "Surface dynamics on submonolayer Pb/Cu(001) surfaces". Physical Chemistry Chemical Physics 24, n.º 8 (2022): 5164–70. http://dx.doi.org/10.1039/d1cp05705g.

Texto completo da fonte
Resumo:
The interplay of the atomic structure and phonon spectra of various two-dimensional ordered phases forming during submonolayer (from 0.375 ML to ultimate 0.6 ML) Pb adsorption on a Cu(001) surface is investigated using embedded atom method interatomic interaction potentials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yagi, K., K. Aoki, H. Minoda, Y. Tanishiro, H. Tamura e T. Suzuki. "REM Studies of Surface Dynamics on Si Surfaces". Microscopy and Microanalysis 3, S2 (agosto de 1997): 579–80. http://dx.doi.org/10.1017/s1431927600009788.

Texto completo da fonte
Resumo:
Recent developments in techniques of real space observations of surfaces are notable. In them reflection electron microscopy (REM) is a unique technique where in-situ real time observations of wide areas of surfaces are possible. In the present paper recent studies of surface dynamic processes on Si surfaces are reviewed. Observed dynamic processes are adsorption induced successive phase transitions, adsorbate induced facet formations and step rearrangements induced by a reversal of specimen heating current direction(so called current effect) and by a reversal of the sign of the surface strain(strain effects).Figure 1 reproduces a series of REM images and RHEED patterns taken during successive phase transition induced by Au deposition on a clean Si(lll) surface at 780°C[l]. (a) shows a REM image taken before Au deposition. Line images with zigzag in shape are atomic steps on the surface. The surface steps up to the right as indicated by a step mark. The corresponding RHEED pattern in (b) shows that the surface has the 7×7 structure.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

KAHNG, B., e K. PARK. "DYNAMICS OF THE CURVATURE-ENERGY-DRIVEN SURFACES". International Journal of Modern Physics B 10, n.º 05 (28 de fevereiro de 1996): 543–61. http://dx.doi.org/10.1142/s0217979296000222.

Texto completo da fonte
Resumo:
The dynamics of the curvature-energy-driven surfaces such as the dynamics of the orientational roughening (OR) transition and the dynamics of the molecular beam epitaxial (MBE) growth with the lattice pinning force are studied. For the dynamics of the OR transition, we first derive the lattice pinning force of the sine-Gordon model, which is in a peculiar form of [Formula: see text] where {êk} (k =1, 2, 3) are the basis vectors of the triangular lattice. The lattice pinning force is renormalized and contributes to the coarse-grained curvature force under the dynamic renormalization group transformation introduced by Nozières and Gallet [J. Phys. (Paris) 48, 353 (1987)]. The dynamic exponent is obtained as z =4 − ∊ with ∊ =2 − d and the mobility is scaled as r−2.51 ∊ in general dimension d ≤ 2. The tilt-tilt correlation function behaves logarithmically with spatial and temporal changes of scales in two dimensions. Next, we study the dynamic equation of the OR transition with the addition of the growth-induced nonlinear term proportional to ∇2 (∇ϕ)2. It is obtained that the OR transition occurs even in the presence of the growth-induced nonlinear term, but the nature of the phase transition changes by the nonlinear term. We compare our analysis with the recent study of the growth-induced roughening transition by Hwa, Kardar and Paczuski [Phys. Rev. Lett.66, 441 (1991)]. It is also found that the lattice pinning force is irrelevant to the MBE growth.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Brune, H. "Thermal dynamics at surfaces". Annalen der Physik 521, n.º 10-11 (5 de outubro de 2009): 675–98. http://dx.doi.org/10.1002/andp.200952110-1103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Gündüz, Güngör. "Dynamics of Minimal Surfaces". International Journal of Theoretical Physics 46, n.º 6 (19 de dezembro de 2006): 1506–27. http://dx.doi.org/10.1007/s10773-006-9289-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Tully, John C. "Chemical dynamics at surfaces". Catalysis Letters 9, n.º 3-4 (1991): 205–17. http://dx.doi.org/10.1007/bf00773179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

HAIGHT, R. "Electron dynamics at surfaces". Surface Science Reports 21, n.º 8 (1995): 275–325. http://dx.doi.org/10.1016/0167-5729(95)00002-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Persson, B. N. J. "Vibrational dynamics at surfaces". Journal of Electron Spectroscopy and Related Phenomena 54-55 (janeiro de 1990): 81–101. http://dx.doi.org/10.1016/0368-2048(90)80201-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Brune, H. "Thermal dynamics at surfaces". Annalen der Physik 18, n.º 10-11 (5 de outubro de 2009): 675–98. http://dx.doi.org/10.1002/andp.200910367.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Shenvi, Neil, Sharani Roy e John C. Tully. "Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping". Journal of Chemical Physics 130, n.º 17 (7 de maio de 2009): 174107. http://dx.doi.org/10.1063/1.3125436.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Humbird, David, e David B. Graves. "Ion-induced damage and annealing of silicon. Molecular dynamics simulations". Pure and Applied Chemistry 74, n.º 3 (1 de janeiro de 2002): 419–22. http://dx.doi.org/10.1351/pac200274030419.

Texto completo da fonte
Resumo:
A study of the interactions of energetic argon ions with silicon surfaces using molecular dynamics simulations is reported. A dynamic balance between ion-induced damage and recrystallization of the surface is detected. By manipulating ion energy, argon ions are able to both create disordered regions near the surface, and recrystallize these disordered regions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

SCHOMMERS, W. "STRUCTURE AND DYNAMICS OF SURFACES: INTRODUCTORY REMARKS". International Journal of Modern Physics B 04, n.º 04 (20 de março de 1990): 525–47. http://dx.doi.org/10.1142/s0217979290000267.

Texto completo da fonte
Resumo:
The relevance of the structure and dynamics of surfaces is discussed by means of some typical examples: effect of relaxation on electronic surface properties, heterogeneous catalysis, kinetic oscillations, etc. In the discussion of experimental methods we have restricted ourselves to brief remarks on the most interesting scattering methods. Some of the theoretical problems are discussed which arise in connection with the determination of the structure and dynamics of surfaces. The molecular dynamics method is introduced, and results of molecular dynamics calculations for krypton surfaces are given in more detail.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Schütt, Matthias. "Dynamics on supersingular K3 surfaces". Commentarii Mathematici Helvetici 91, n.º 4 (2016): 705–19. http://dx.doi.org/10.4171/cmh/400.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

NONOMURA, Yoshimune. "Wetting Dynamics on Biological Surfaces". Oleoscience 14, n.º 4 (2014): 149–56. http://dx.doi.org/10.5650/oleoscience.14.149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Arrighi, Pablo, Simon Martiel e Zizhu Wang. "Causal Dynamics of Discrete Surfaces". Electronic Proceedings in Theoretical Computer Science 144 (30 de março de 2014): 30–40. http://dx.doi.org/10.4204/eptcs.144.3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cont, Rama, e José da Fonseca. "Dynamics of implied volatility surfaces". Quantitative Finance 2, n.º 1 (fevereiro de 2002): 45–60. http://dx.doi.org/10.1088/1469-7688/2/1/304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Basso, Joao Marcos Vensi, Ilya Yurchenko, Matthew R. Wiens e Cristian Staii. "Neuron dynamics on directional surfaces". Soft Matter 15, n.º 48 (2019): 9931–41. http://dx.doi.org/10.1039/c9sm01769k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Kantor, Yacov, Mehran Kardar e David R. Nelson. "Tethered surfaces: Statics and dynamics". Physical Review A 35, n.º 7 (1 de abril de 1987): 3056–71. http://dx.doi.org/10.1103/physreva.35.3056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Hisakado, Masato, e Miki Wadati. "Integrable Dynamics of Discrete Surfaces". Journal of the Physical Society of Japan 64, n.º 11 (15 de novembro de 1995): 4129–34. http://dx.doi.org/10.1143/jpsj.64.4129.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

IMBIHL, R. "Nonlinear dynamics on catalytic surfaces". Catalysis Today 105, n.º 2 (30 de julho de 2005): 206–22. http://dx.doi.org/10.1016/j.cattod.2005.02.045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

van der Veen, J. F., e J. W. M. Frenken. "Dynamics and melting of surfaces". Surface Science Letters 178, n.º 1-3 (dezembro de 1986): A654. http://dx.doi.org/10.1016/0167-2584(86)90163-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Van Der Veen, J. F., e J. W. M. Frenken. "Dynamics and melting of surfaces". Surface Science 178, n.º 1-3 (dezembro de 1986): 382–95. http://dx.doi.org/10.1016/0039-6028(86)90315-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Chulkov, E. V., V. M. Silkin e M. Machado. "Quasiparticle dynamics on metal surfaces". Surface Science 482-485 (junho de 2001): 693–701. http://dx.doi.org/10.1016/s0039-6028(00)01070-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kenny, Steven, Mark R. Wilby, Andrea K. Myers-Beaghton e Dimitri D. Vvedensky. "Cluster dynamics on vicinal surfaces". Physical Review B 46, n.º 16 (15 de outubro de 1992): 10345–52. http://dx.doi.org/10.1103/physrevb.46.10345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Matsumoto, Mitshuhiro. "Molecular Dynamics of Liquid Surfaces". Molecular Simulation 16, n.º 4-6 (março de 1996): 209–17. http://dx.doi.org/10.1080/08927029608024075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Palmer, R. E. "Electron-molecule dynamics at surfaces". Progress in Surface Science 41, n.º 1 (setembro de 1992): 51–108. http://dx.doi.org/10.1016/0079-6816(92)90010-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Pierre-Louis, O., G. Danker, J. Chang, K. Kassner e C. Misbah. "Nonlinear dynamics of vicinal surfaces". Journal of Crystal Growth 275, n.º 1-2 (fevereiro de 2005): 56–64. http://dx.doi.org/10.1016/j.jcrysgro.2004.10.148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Kleyn, A. W. "Probing Chemical Dynamics at Surfaces". Chinese Journal of Chemistry 19, n.º 1 (26 de agosto de 2010): 9–15. http://dx.doi.org/10.1002/cjoc.20010190103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Tian, Houkuan, Quanyin Xu, Haiyang Zhang, Rodney D. Priestley e Biao Zuo. "Surface dynamics of glasses". Applied Physics Reviews 9, n.º 1 (março de 2022): 011316. http://dx.doi.org/10.1063/5.0083726.

Texto completo da fonte
Resumo:
Two challenging scientific disciplines, i.e., the physics of glasses [Anderson, Science 267, 1615 (1995); Kennedy and Norman, Science 309, 75 (2005)] and interface chemistry [Sanders, 125 Questions: Exploration and Discovery (Science/AAAS, 2021); Yates and Campbell, Proc. Natl. Acad. Sci. U. S. A. 108, 911 (2011)], converge in research on the dynamics of glass surfaces. In recent decades, studies have revealed that glasses exhibit profound alterations in their dynamics within nanometers of interfaces. Rather, at the free surfaces of glassy materials with arrested bulk dynamics, a highly mobile ultrathin layer is present, wherein molecular mobility is much faster than in the bulk. Enhanced surface mobility has become an important scientific concept and is intrinsic and universal to various categories of glasses (e.g., molecular, metallic, and polymeric glasses), thus having technological implications for processing and applications of glasses. This review provides a comprehensive summary of the historical evolution of the concept, characterization, theoretical modeling, and unique features of dynamics at the surfaces of glasses. Additionally, this paper also illustrates potential advantages of incorporating this concept into designing improved materials with extraordinary properties. We hope this review article will contribute to the current understanding of the unique surface dynamics of glassy materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Vrancken, Nandi, Stefanie Sergeant, Guy Vereecke, Frank Holsteyns, Herman Terryn, Stefan de Gendt e Xiu Mei Xu. "Exploring Wetting Dynamics on Superhydrophobic Nanopatterned Surfaces Using ATR-FTIR". Solid State Phenomena 282 (agosto de 2018): 175–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.175.

Texto completo da fonte
Resumo:
Accurate characterization of the underwater stability of superhydrophobic surfaces is crucial for the design of durable anti-fouling materials and advanced microfluidic concepts. Although superhydrophobic breakdown is a major issue that hampers full exploitation of superhydrophobic functional materials, suitable characterization methods are lacking and relatively little is known about the wetting dynamics. In this work we explore a novel method based on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for large-area in-situ analysis of wetting states and wetting transitions on nanostructured surfaces. Spontaneous wetting is induced on superhydrophobic silicon nanopillars through in-situ modulation of the liquid composition and surface tension. The high surface sensitivity of ATR-FTIR enables quantitative evaluation of the instantaneous liquid composition and wetted area. Critical transition criteria for superhydrophobic breakdown are assessed using both ATR-FTIR and goniometric measurements. Significant deviations from classical wetting models are revealed, emphasizing the need for more accurate transition criteria and careful experimental validation. Breakdown kinetics near the critical transition are found to be significantly slowed down on nanostructured surfaces, which underlines the necessity for accurate characterization of wetting dynamics at the nanoscale. The proposed ATR-FTIR method can be promising for dynamic studies of wetting transitions on more advanced surfaces, as hierarchical structures or oleophobic designs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Schriner, Charles T., e Bharat Bhushan. "Water droplet dynamics on bioinspired conical surfaces". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, n.º 2150 (10 de junho de 2019): 20190118. http://dx.doi.org/10.1098/rsta.2019.0118.

Texto completo da fonte
Resumo:
Cacti use the Laplace pressure gradient due to conical geometry as a mechanism for collecting water from fog. Bioinspired surfaces using conical geometry can be developed for water collection from fog for human consumption. A systematic study is presented which investigates the dynamics of water droplets on a bioinspired conical surface. A series of experiments was conducted where a known volume of droplets was deposited on the cone. This was followed by an investigation into droplet dynamics where the droplets are deposited from fog and the volume is unknown. This includes a study on the macroscopic level as well as the microscopic level. The main parameters that were varied for these tests were the tip angle and the cone orientation. The droplet movement observed was compared relatively. Based on captured videos of droplet movement, distance travelled and velocities were measured. The Laplace pressure gradient, gravity and droplet coalescence were found to be the mechanisms of droplet movement on a conical surface. The findings of this study should be of interest in designing bioinspired surfaces with high water collection. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

LIU, FUSHENG, YUFEI WANG, WANGYU HU, TENG WANG, YANHONG DING, SHIWEN HE e YIFENG CHEN. "ANISOTROPY DIFFUSION DYNAMICS BEHAVIORS ON Pd(110) SURFACES: A MOLECULAR DYNAMICS STUDY". Surface Review and Letters 22, n.º 01 (fevereiro de 2015): 1550013. http://dx.doi.org/10.1142/s0218625x15500134.

Texto completo da fonte
Resumo:
Using modified analytic embedded atom method and molecular dynamics (MDs) simulation, the self-diffusion dynamics behaviors of Pd adatom on perfect Pd (110) and reconstruction Pd (110)-(1 × 2) surfaces have been studied. Our simulations show the diffusion of Pd adatom is 1D motion along the [Formula: see text] direction of the channel on Pd (110)-(1 × 2) surface between 650 and 900 K. On perfect Pd (110) surface, the adatom diffuses along the [Formula: see text] direction of the channel in the low temperature range from 450 to 550 K by the simple hopping mechanism, and the diffusion is 2D between 600 and 800 K, the diffusion across the [Formula: see text] direction of the channel wall is by the exchange mechanism with an atom of channel wall. The diffusion dynamics behaviors have been derived from the Arrhenius law. On perfect Pd (110) surface, the diffusion dynamics behaviors along the [Formula: see text] direction of the channel may be divided into two parts in different temperature ranges. Our results show that the diffusion mobility D of Pd adatom along the [Formula: see text] direction on perfect Pd (110) surface is quicker than that on Pd (110)-(1 × 2) surface.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Mietke, Alexander, Frank Jülicher e Ivo F. Sbalzarini. "Self-organized shape dynamics of active surfaces". Proceedings of the National Academy of Sciences 116, n.º 1 (19 de dezembro de 2018): 29–34. http://dx.doi.org/10.1073/pnas.1810896115.

Texto completo da fonte
Resumo:
Mechanochemical processes in thin biological structures, such as the cellular cortex or epithelial sheets, play a key role during the morphogenesis of cells and tissues. In particular, they are responsible for the dynamical organization of active stresses that lead to flows and deformations of the material. Consequently, advective transport redistributes force-generating molecules and thereby contributes to a complex mechanochemical feedback loop. It has been shown in fixed geometries that this mechanism enables patterning, but the interplay of these processes with shape changes of the material remains to be explored. In this work, we study the fully self-organized shape dynamics using the theory of active fluids on deforming surfaces and develop a numerical approach to solve the corresponding force and torque balance equations. We describe the spontaneous generation of nontrivial surface shapes, shape oscillations, and directed surface flows that resemble peristaltic waves from self-organized, mechanochemical processes on the deforming surface. Our approach provides opportunities to explore the dynamics of self-organized active surfaces and can help to understand the role of shape as an integral element of the mechanochemical organization of morphogenetic processes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

R. J. Kirkpatrick, A. G. Kalinichev e J. Wang. "Molecular dynamics modelling of hydrated mineral interlayers and surfaces: structure and dynamics". Mineralogical Magazine 69, n.º 3 (junho de 2005): 289–308. http://dx.doi.org/10.1180/0026461056930251.

Texto completo da fonte
Resumo:
AbstractThis paper reviews the results of recent molecular dynamics (MD) modelling studies of the interaction of water and solute species with mineral surfaces and their behaviour in mineral interlayers. Emphasis is on results for single and double hydroxide phases. Computational results are presented for water and anions in the interlayers of the Ca2Al, Mg2Al, and LiAl2layered double hydroxides and on the surfaces of the Ca2Al phase. Detailed results for water on the (001) surface of brucite (Mg(OH)2) are presented and compared to published results for other phases. In all these cases, hydrogen bonding and the development of a hydrogen-bond network involving the H2O molecules and the solid substrate play very significant roles. The MD methods are especially effective for investigating the structure and dynamics of mineral-fluid interfaces and mineral interlayers, because they can be applied to systems containing hundreds to thousands of atoms and for extended durations of the order of nanoseconds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Imbihl, R. "Nonlinear dynamics on catalytic surfaces: The contribution of surface science". Surface Science 603, n.º 10-12 (junho de 2009): 1671–79. http://dx.doi.org/10.1016/j.susc.2008.11.042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Planat, Michel, David Chester e Klee Irwin. "Dynamics of Fricke–Painlevé VI Surfaces". Dynamics 4, n.º 1 (2 de janeiro de 2024): 1–13. http://dx.doi.org/10.3390/dynamics4010001.

Texto completo da fonte
Resumo:
The symmetries of a Riemann surface Σ∖{ai} with n punctures ai are encoded in its fundamental group π1(Σ). Further structure may be described through representations (homomorphisms) of π1 over a Lie group G as globalized by the character variety C=Hom(π1,G)/G. Guided by our previous work in the context of topological quantum computing (TQC) and genetics, we specialize on the four-punctured Riemann sphere Σ=S2(4) and the ‘space-time-spin’ group G=SL2(C). In such a situation, C possesses remarkable properties: (i) a representation is described by a three-dimensional cubic surface Va,b,c,d(x,y,z) with three variables and four parameters; (ii) the automorphisms of the surface satisfy the dynamical (non-linear and transcendental) Painlevé VI equation (or PVI); and (iii) there exists a finite set of 1 (Cayley–Picard)+3 (continuous platonic)+45 (icosahedral) solutions of PVI. In this paper, we feature the parametric representation of some solutions of PVI: (a) solutions corresponding to algebraic surfaces such as the Klein quartic and (b) icosahedral solutions. Applications to the character variety of finitely generated groups fp encountered in TQC or DNA/RNA sequences are proposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Reif, Juergen. "Dynamics and Processes on Laser-Irradiated Surfaces". Nanomaterials 13, n.º 3 (17 de janeiro de 2023): 379. http://dx.doi.org/10.3390/nano13030379.

Texto completo da fonte
Resumo:
The modification of solid surfaces via the impacts of intense laser pulses and the dynamics of the relevant processes are reviewed. We start with rather weak interactions on dielectric materials, based on non-linear absorption across the bandgap and resulting in low-level local effects like electron and individual ion emission. The role of such locally induced defects in the cumulative effect of incubation, i.e., the increase in efficiency with the increasing number of laser pulses, is addressed. At higher excitation density levels, due to easier laser–material coupling and higher laser fluence, the energy dissipation is considerable, leading to lattice destabilization, surface relaxation, ablation, and surface modification (e.g., laser-induced periodic surface structures). Finally, a short list of possible applications, namely in the field of wettability, is presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Whitehouse, D. J., e W. L. Wang. "Dynamics and Trackability of Stylus Systems". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 210, n.º 2 (abril de 1996): 159–65. http://dx.doi.org/10.1243/pime_proc_1996_210_101_02.

Texto completo da fonte
Resumo:
Surface measuring instruments have been used for fifty years and their applications have been widespread. However, new demands are being made such as increased speed of measurement and also the capability of measuring more complex surfaces. This paper examines ways in which the design of the pick-up element can be optimized. It also deals in detail with the optimum parameters needed to measure a wide variety of random as well as periodic surfaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Shi, Xi, e Andreas A. Polycarpou. "Adhesive Effects on Dynamic Friction for Unlubricated Rough Planar Surfaces". Journal of Tribology 128, n.º 4 (1 de junho de 2006): 841–50. http://dx.doi.org/10.1115/1.2345392.

Texto completo da fonte
Resumo:
As the size of contacting and sliding tribosystems decrease, intermolecular or adhesive forces become significant partly due to nanometer size surface roughness. The presence of adhesion has a major influence on the interfacial contact and friction forces as well as the microtribosystem dynamics (microtribodynamics) and thus influences the overall dynamic friction behavior. In this paper, a dynamic friction model that explicitly includes adhesion, interfacial damping, and the system dynamics for realistic rough surfaces was developed. The results show that the amplitude and mean value of the time varying normal contact and friction forces increase in the presence of adhesion under continuous contact conditions. Also, due to the attractive nature of adhesion, its presence delays or eliminates the occurrence of loss of contact. Furthermore, in the presence of significant adhesion, dynamic friction behavior is significantly more complicated compared to the no adhesion case, and the dynamic friction coefficient predictions may be misleading. Thus, it is more appropriate to discuss dynamic friction force instead of dynamic friction coefficient under dynamic conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Šolc, Roland, Daniel Tunega, Martin H. Gerzabek, Susanne K. Woche e Jörg Bachmann. "Wettability of organically coated tridymite surface – molecular dynamics study". Pure and Applied Chemistry 87, n.º 4 (1 de abril de 2015): 405–13. http://dx.doi.org/10.1515/pac-2014-1103.

Texto completo da fonte
Resumo:
AbstractClassical molecular dynamics (MD) study was performed in order to explain a different wettability of silanized silica-glass surfaces prepared by using two different precursors – dichlorodimethylsilane (DCDMS) and dimethyldiethoxysilane (DMDES), respectively. Whereas the modified surface prepared by DCDMS becomes hydrophobic (contact angle (CA) of water >90°), DMDES-modified surface stays partially hydrophilic (CA ∼39°). In order to explain the observed discrepancy, several models of surfaces of trydimite with different coating by (CH3)2–Si= units were constructed and treated by water nanodroplets in the MD simulations. The models of surfaces differ by a different degree of surface coverage and/or oligomerized (CH3)2–Si= units in a lateral dimension. The simulations showed that incomplete coverage leads to a decrease of the computed CA, whereas upon lateral oligomerization the CA increases. This variation of the CA is directly related to the accessible amount of the hydroxyl groups on the surfaces and can be a possible explanation of the difference in wettability between DCDMS- and DMDES-treated glass surfaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Latyshev, AV, e K. Yagi. "In Situ REM Observation of Step Dynamics on Silicon Surfaces". Microscopy and Microanalysis 3, S2 (agosto de 1997): 581–82. http://dx.doi.org/10.1017/s143192760000979x.

Texto completo da fonte
Resumo:
Clear understanding of the structural and morphological transformations on the crystal surfaces can only be extracted from considerations of the dynamical properties of surface evolution. So ultra high vacuum reflection electron microscopy (UHV REM) has been applied to in situ studies of step behaviors on the silicon surfaces during various treatments. Dependence of the surface morphology on the number of parameters is reviewed with new results. Special attention is paid to influence of the electromigration phenomena and strain fields on structural evolution of the surfaces during sublimation, phase transition and epitaxial growth. The stability of the atomic step distributions is discussed in the frame of kinetical morphological transitions on silicon surfaces during DC heating of studied crystal [1].The step motion during sublimation shows a strong influence of stress fields on the step configurations [2]. The importance of surface stress is obvious because in equilibrium conditions there is a residual stress on the surface due to existence of broken bonds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Amiri, A., B. Caasenbrood, N. van de Wouw e I. Lopez Arteaga. "A replacement model to simulate the nonlinear dynamics of electro-responsive liquid crystal coatings". AIP Advances 13, n.º 3 (1 de março de 2023): 035203. http://dx.doi.org/10.1063/5.0138991.

Texto completo da fonte
Resumo:
An electric circuit replacement model is proposed to simulate the key nonlinear dynamics of electro-responsive liquid crystal polymer networks (LCNs). LCNs are known for having great potential to be integrated into smart functional surfaces due to their ability to generate various surface patterns. However, due to their complex molecular dynamics, low-order dynamic models that can accurately describe and predict their dynamic behavior are still lacking. In light of this research gap, we develop a lumped-parameter replacement model based on the observed dynamics in the experimental data and the physics of LCN dielectric properties. The unique assembly of lumped parameters in its simplest form describes the transformation of a high-frequency input voltage to a relatively slow increase in the local height of the LCN coating in between the electrodes, serving as an excitation mechanism to induce height change. The nonlinear dynamics of this height increase, as a function of both excitation frequency and voltage, is described by the proposed model. Furthermore, the comparison of the simulation results with the experimental data from LCN shows that key LCN response characteristics are captured well by the model. This model makes it possible to accurately predict and control the response of the electro-responsive LCN surfaces to obtain a predefined desired deformation pattern, which is a vital requirement for integrating them in haptic and smart surface devices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia