Literatura científica selecionada sobre o tema "Dynamical Systems"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Dynamical Systems".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Dynamical Systems"

1

Hornstein, John, e V. I. Arnold. "Dynamical Systems." American Mathematical Monthly 96, n.º 9 (novembro de 1989): 861. http://dx.doi.org/10.2307/2324864.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chillingworth, D. R. J., D. K. Arrowsmith e C. M. Place. "Dynamical Systems". Mathematical Gazette 79, n.º 484 (março de 1995): 233. http://dx.doi.org/10.2307/3620112.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Jacob, G. "Dynamical systems". Mathematics and Computers in Simulation 42, n.º 4-6 (novembro de 1996): 639. http://dx.doi.org/10.1016/s0378-4754(97)84413-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rota, Gian-Carlo. "Dynamical systems". Advances in Mathematics 58, n.º 3 (dezembro de 1985): 322. http://dx.doi.org/10.1016/0001-8708(85)90129-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Meiss, James. "Dynamical systems". Scholarpedia 2, n.º 2 (2007): 1629. http://dx.doi.org/10.4249/scholarpedia.1629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Li, Zhiming, Minghan Wang e Guo Wei. "Induced hyperspace dynamical systems of symbolic dynamical systems". International Journal of General Systems 47, n.º 8 (3 de outubro de 2018): 809–20. http://dx.doi.org/10.1080/03081079.2018.1524467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Nasim, Imran, e Michael E. Henderson. "Dynamically Meaningful Latent Representations of Dynamical Systems". Mathematics 12, n.º 3 (2 de fevereiro de 2024): 476. http://dx.doi.org/10.3390/math12030476.

Texto completo da fonte
Resumo:
Dynamical systems are ubiquitous in the physical world and are often well-described by partial differential equations (PDEs). Despite their formally infinite-dimensional solution space, a number of systems have long time dynamics that live on a low-dimensional manifold. However, current methods to probe the long time dynamics require prerequisite knowledge about the underlying dynamics of the system. In this study, we present a data-driven hybrid modeling approach to help tackle this problem by combining numerically derived representations and latent representations obtained from an autoencoder. We validate our latent representations and show they are dynamically interpretable, capturing the dynamical characteristics of qualitatively distinct solution types. Furthermore, we probe the topological preservation of the latent representation with respect to the raw dynamical data using methods from persistent homology. Finally, we show that our framework is generalizable, having been successfully applied to both integrable and non-integrable systems that capture a rich and diverse array of solution types. Our method does not require any prior dynamical knowledge of the system and can be used to discover the intrinsic dynamical behavior in a purely data-driven way.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Caballero, Rubén, Alexandre N. Carvalho, Pedro Marín-Rubio e José Valero. "Robustness of dynamically gradient multivalued dynamical systems". Discrete & Continuous Dynamical Systems - B 24, n.º 3 (2019): 1049–77. http://dx.doi.org/10.3934/dcdsb.2019006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Landry, Nicholas W., e Juan G. Restrepo. "Hypergraph assortativity: A dynamical systems perspective". Chaos: An Interdisciplinary Journal of Nonlinear Science 32, n.º 5 (maio de 2022): 053113. http://dx.doi.org/10.1063/5.0086905.

Texto completo da fonte
Resumo:
The largest eigenvalue of the matrix describing a network’s contact structure is often important in predicting the behavior of dynamical processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Akashi, Shigeo. "Embedding of expansive dynamical systems into symbolic dynamical systems". Reports on Mathematical Physics 46, n.º 1-2 (agosto de 2000): 11–14. http://dx.doi.org/10.1016/s0034-4877(01)80003-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Dynamical Systems"

1

Behrisch, Mike, Sebastian Kerkhoff, Reinhard Pöschel, Friedrich Martin Schneider e Stefan Siegmund. "Dynamical Systems in Categories". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129909.

Texto completo da fonte
Resumo:
In this article we establish a bridge between dynamical systems, including topological and measurable dynamical systems as well as continuous skew product flows and nonautonomous dynamical systems; and coalgebras in categories having all finite products. We introduce a straightforward unifying definition of abstract dynamical system on finite product categories. Furthermore, we prove that such systems are in a unique correspondence with monadic algebras whose signature functor takes products with the time space. We substantiate that the categories of topological spaces, metrisable and uniformisable spaces have exponential objects w.r.t. locally compact Hausdorff, σ-compact or arbitrary time spaces as exponents, respectively. Exploiting the adjunction between taking products and exponential objects, we demonstrate a one-to-one correspondence between monadic algebras (given by dynamical systems) for the left-adjoint functor and comonadic coalgebras for the other. This, finally, provides a new, alternative perspective on dynamical systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zaks, Michael. "Fractal Fourier spectra in dynamical systems". Thesis, [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0019/zaks.ps.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Haydn, Nicolai Theodorus Antonius. "On dynamical systems". Thesis, University of Warwick, 1986. http://wrap.warwick.ac.uk/55813/.

Texto completo da fonte
Resumo:
Part A. We prove existence of smooth invariant circles for area preserving twist maps close enough to integrable using renormalisation. The smoothness depends upon that of the map and the Liouville exponent of the rotation number. Part B. Ruelle and Capocaccia gave a new definition of Gibbs states on Smale spaces. Equilibrium states of suitable function there on are known to be Gibbs states. The converse in discussed in this paper, where the problem is reduced to shift spaces and there solved by constructing suitable conjugating homeomorphisms in order to verify the conditions for Gibbs states which Bowen gave for shift spaces, where the equivalence to equilibrium states is known. Part C. On subshifts which are derived from Markov partitions exists an equivalence relation which idendifies points that lie on the boundary set of the partition. In this paper we restrict to symbolic dynamics. We express the quotient space in terms of a non-transitive subshift of finite type, give a necessary and sufficient condition for the existence of a local product structure and evaluate the Zeta function of the quotient space. Finally we give an example where the quotient space is again a subshift of finite type.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Miles, Richard Craig. "Arithmetic dynamical systems". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Che, Dzul-Kifli Syahida. "Chaotic dynamical systems". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.

Texto completo da fonte
Resumo:
In this work, we look at the dynamics of four different spaces, the interval, the unit circle, subshifts of finite type and compact countable sets. We put our emphasis on chaotic dynamical system and exhibit sufficient conditions for the system on the interval, the unit circle and subshifts of finite type to be chaotic in three different types of chaos. On the interval, we reveal two weak conditions’s role as a fast track to chaotic behavior. We also explain how a strong dense periodicity property influences chaotic behavior of dynamics on the interval, the unit circle and subshifts of finite type. Finally we show how dynamics property of compact countable sets effecting the structure of the sets.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hillman, Chris. "Sturmian dynamical systems /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5806.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Umenberger, Jack. "Convex Identifcation of Stable Dynamical Systems". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17321.

Texto completo da fonte
Resumo:
This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Freeman, Isaac. "A modular system for constructing dynamical systems". Thesis, University of Canterbury. Mathematics, 1998. http://hdl.handle.net/10092/8888.

Texto completo da fonte
Resumo:
This thesis discusses a method based on the dual principle of Rössler, and developed by Deng, for systematically constructing robust dynamical systems from lower dimensional subsystems. Systems built using this method may be modified easily, and are suitable for mathematical modelling. Extensions are made to this scheme, which allow one to describe a wider range of dynamical behaviour. These extensions allow the creation of systems that reproduce qualitative features of the Lorenz Attractor (including bifurcation properties) and of Chua's circuit, but which are easily extensible.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ozaki, Junichi. "Dynamical quantum effects in cluster dynamics of Fermi systems". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199083.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

CAPPELLINI, VALERIO. "QUANTUM DYNAMICAL ENTROPIES AND COMPLEXITY IN DYNAMICAL SYSTEMS". Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12545.

Texto completo da fonte
Resumo:
2002/2003
We analyze the behavior of two quantum dynamical entropies in connection with the classical limit. Using strongly chaotic classical dynamical systems as models (Arnold Cat Maps and Sawtooth Maps), we also propose a discretization procedure that resembles quantization; even in this case, studies of quantum dynamical entropy production are carried out and the connection with the continuous limit is explored. In both case (quantization and discretization) the entropy production converge to the Kolmogorov-Sinai invariant on time-scales that are logarithmic in the quantization (discretization) parameter.
XVI Ciclo
1969
Versione digitalizzata della tesi di dottorato cartacea.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Dynamical Systems"

1

Dynamical systems. Mineola, N.Y: Dover Publications, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

1937-, Arnolʹd V. I., e Novikov Sergeĭ Petrovich, eds. Integrable systems nonholonomic dynamical systems. Berlin: Springer-Verlag, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

service), SpringerLink (Online, ed. Dynamical Systems. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Tu, Pierre N. V. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02779-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Arrowsmith, D. K., e C. M. Place. Dynamical Systems. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2388-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Alexander, James C., ed. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082819.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Arnold, Ludwig, Christopher K. R. T. Jones, Konstantin Mischaikow e Geneviève Raugel. Dynamical Systems. Editado por Russell Johnson. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095237.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kurzhanski, Alexander B., e Karl Sigmund, eds. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-00748-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Barreira, Luis, e Claudia Valls. Dynamical Systems. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Pickl, Stefan, e Werner Krabs. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13722-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Dynamical Systems"

1

Greiner, Walter. "Dynamical Systems". In Classical Mechanics, 463–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03434-3_23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

McLennan, Andrew. "Dynamical Systems". In Advanced Fixed Point Theory for Economics, 289–330. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0710-2_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Neimark, Juri I. "Dynamical systems". In Foundations of Engineering Mechanics, 5–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-47878-2_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Collet, Pierre, Servet Martínez e Jaime San Martín. "Dynamical Systems". In Quasi-Stationary Distributions, 227–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33131-2_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Michel, Anthony N., Ling Hou e Derong Liu. "Dynamical Systems". In Systems & Control: Foundations & Applications, 19–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15275-2_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bhatia, Nam Parshad, e George Philip Szegö. "Dynamical Systems". In Stability Theory of Dynamical Systems, 5–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-62006-5_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Polderman, Jan Willem, e Jan C. Willems. "Dynamical Systems". In Texts in Applied Mathematics, 1–25. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2953-5_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sun, Jian-Qiao, Fu-Rui Xiong, Oliver Schütze e Carlos Hernández. "Dynamical Systems". In Cell Mapping Methods, 11–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0457-6_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bubnicki, Zdzislaw. "Dynamical Systems". In Analysis and Decision Making in Uncertain Systems, 169–200. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3760-3_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Everest, Graham, e Thomas Ward. "Dynamical Systems". In Heights of Polynomials and Entropy in Algebraic Dynamics, 29–50. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3898-3_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Dynamical Systems"

1

Jiang, Yunping, e Lan Wen. "DYNAMICAL SYSTEMS". In Proceedings of the International Conference in Honor of Professor Liao Shantao. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Andersson, Stig I., Ǻke E. Andersson e Ulf Ottoson. "Dynamical Systems". In Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535526.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Shan-Tao, Liao, Ye Yan-Qian e Ding Tong-Ren. "Dynamical Systems". In Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535892.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

"Dynamical systems". In Proceedings of the 7th International ISAAC Congress. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313179_others11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Boutayeb, M. "A decentralized software sensor based approach for large-scale dynamical systems". In 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482344.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Chen, Wenchao, Bo Chen, Yicheng Liu, Qianru Zhao e Mingyuan Zhou. "Switching Poisson Gamma Dynamical Systems". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/281.

Texto completo da fonte
Resumo:
We propose Switching Poisson gamma dynamical systems (SPGDS) to model sequentially observed multivariate count data. Different from previous models, SPGDS assigns its latent variables into mixture of gamma distributed parameters to model complex sequences and describe the nonlinear dynamics, meanwhile, capture various temporal dependencies. For efficient inference, we develop a scalable hybrid stochastic gradient-MCMC and switching recurrent autoencoding variational inference, which is scalable to large scale sequences and fast in out-of-sample prediction. Experiments on both unsupervised and supervised tasks demonstrate that the proposed model not only has excellent fitting and prediction performance on complex dynamic sequences, but also separates different dynamical patterns within them.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rabinovich, Y., A. Sinclair e A. Wigderson. "Quadratic dynamical systems". In Proceedings., 33rd Annual Symposium on Foundations of Computer Science. IEEE, 1992. http://dx.doi.org/10.1109/sfcs.1992.267761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pokorny, Pavel. "Excitable dynamical systems". In 12th Czech-Slovak-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, editado por Jan Perina, Sr., Miroslav Hrabovsky e Jaromir Krepelka. SPIE, 2001. http://dx.doi.org/10.1117/12.417864.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

YOUNG, LAI-SANG. "DYNAMICAL SYSTEMS EVOLVING". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ushiki, S. "Chaotic Dynamical Systems". In RIMS Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814536165.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Dynamical Systems"

1

Newhouse, Sheldon E. Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1987. http://dx.doi.org/10.21236/ada215319.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hale, Jack K. Analysis of Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1988. http://dx.doi.org/10.21236/ada204636.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Jones, Christopher, Steven Wiggins e George Haller. Dynamical Systems and Oceanography. Fort Belvoir, VA: Defense Technical Information Center, abril de 1994. http://dx.doi.org/10.21236/ada279807.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jones, Christopher, Steven Wiggins e George Haller. Dynamical Systems and Oceanography. Fort Belvoir, VA: Defense Technical Information Center, abril de 1994. http://dx.doi.org/10.21236/ada282635.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hale, Jack K. Analysis of Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1985. http://dx.doi.org/10.21236/ada166224.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Weerasinghe, Ananda P. Controlled Stochastic Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, abril de 2007. http://dx.doi.org/10.21236/ada470046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Philip Holmes. NONLINEAR DYNAMICAL SYSTEMS - Final report. Office of Scientific and Technical Information (OSTI), dezembro de 2005. http://dx.doi.org/10.2172/888778.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Denman, Matthew R., e Arlo Leroy Ames. Dynamical systems probabilistic risk assessment. Office of Scientific and Technical Information (OSTI), março de 2014. http://dx.doi.org/10.2172/1177044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Barbone, Paul E. Shock Survivability of Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, maio de 1999. http://dx.doi.org/10.21236/ada363045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Glinsky, Michael Edwin, e Poul Hjorth. Helicity in Hamiltonian dynamical systems. Office of Scientific and Technical Information (OSTI), dezembro de 2019. http://dx.doi.org/10.2172/1595915.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia