Literatura científica selecionada sobre o tema "Dynamic stochastic models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Dynamic stochastic models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Dynamic stochastic models"
Assaf, A. George, Mike G. Tsionas e Florian Kock. "Dynamic quantile stochastic frontier models". International Journal of Hospitality Management 89 (agosto de 2020): 102588. http://dx.doi.org/10.1016/j.ijhm.2020.102588.
Texto completo da fonteDror, Moshe, e Warren Powell. "Stochastic and Dynamic Models in Transportation". Operations Research 41, n.º 1 (fevereiro de 1993): 11–14. http://dx.doi.org/10.1287/opre.41.1.11.
Texto completo da fonteReichman, David R. "On Stochastic Models of Dynamic Disorder†". Journal of Physical Chemistry B 110, n.º 38 (setembro de 2006): 19061–65. http://dx.doi.org/10.1021/jp061992j.
Texto completo da fonteYano, Makoto. "Comparative statics in dynamic stochastic models". Journal of Mathematical Economics 18, n.º 2 (janeiro de 1989): 169–85. http://dx.doi.org/10.1016/0304-4068(89)90020-7.
Texto completo da fonteZilcha, I. "Efficiency in Stochastic Dynamic Economic Models". IFAC Proceedings Volumes 22, n.º 5 (junho de 1989): 357–61. http://dx.doi.org/10.1016/s1474-6670(17)53474-6.
Texto completo da fontePopkov, Yu S. "Macrosystems Models of Dynamic Stochastic Networks". Automation and Remote Control 64, n.º 12 (dezembro de 2003): 1956–74. http://dx.doi.org/10.1023/b:aurc.0000008434.58605.1b.
Texto completo da fonteCreal, Drew D., e Ruey S. Tsay. "High dimensional dynamic stochastic copula models". Journal of Econometrics 189, n.º 2 (dezembro de 2015): 335–45. http://dx.doi.org/10.1016/j.jeconom.2015.03.027.
Texto completo da fonteFan, Ruzong, Bin Zhu e Yuedong Wang. "Stochastic dynamic models and Chebyshev splines". Canadian Journal of Statistics 42, n.º 4 (3 de novembro de 2014): 610–34. http://dx.doi.org/10.1002/cjs.11233.
Texto completo da fonteTsionas, Efthymios G. "Inference in dynamic stochastic frontier models". Journal of Applied Econometrics 21, n.º 5 (2006): 669–76. http://dx.doi.org/10.1002/jae.862.
Texto completo da fontePopkov, Yuri S., Alexey Yu Popkov, Yuri A. Dubnov e Dimitri Solomatine. "Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models". Mathematics 8, n.º 7 (8 de julho de 2020): 1119. http://dx.doi.org/10.3390/math8071119.
Texto completo da fonteTeses / dissertações sobre o assunto "Dynamic stochastic models"
Balijepalli, Narasimha Chandrasekhar. "Stochastic process models for dynamic traffic assignment". Thesis, University of Leeds, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436385.
Texto completo da fonteChu, Qin. "Dynamic and stochastic models for container allocation". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11742.
Texto completo da fonteCorneli, Marco. "Dynamic stochastic block models, clustering and segmentation in dynamic graphs". Thesis, Paris 1, 2017. http://www.theses.fr/2017PA01E012/document.
Texto completo da fonteThis thesis focuses on the statistical analysis of dynamic graphs, both defined in discrete or continuous time. We introduce a new extension of the stochastic block model (SBM) for dynamic graphs. The proposed approach, called dSBM, adopts non homogeneous Poisson processes to model the interaction times between pairs of nodes in dynamic graphs, either in discrete or continuous time. The intensity functions of the processes only depend on the node clusters, in a block modelling perspective. Moreover, all the intensity functions share some regularity properties on hidden time intervals that need to be estimated. A recent estimation algorithm for SBM, based on the greedy maximization of an exact criterion (exact ICL) is adopted for inference and model selection in dSBM. Moreover, an exact algorithm for change point detection in time series, the "pruned exact linear time" (PELT) method is extended to deal with dynamic graph data modelled via dSBM. The approach we propose can be used for change point analysis in graph data. Finally, a further extension of dSBM is developed to analyse dynamic net- works with textual edges (like social networks, for instance). In this context, the graph edges are associated with documents exchanged between the corresponding vertices. The textual content of the documents can provide additional information about the dynamic graph topological structure. The new model we propose is called "dynamic stochastic topic block model" (dSTBM).Graphs are mathematical structures very suitable to model interactions between objects or actors of interest. Several real networks such as communication networks, financial transaction networks, mobile telephone networks and social networks (Facebook, Linkedin, etc.) can be modelled via graphs. When observing a network, the time variable comes into play in two different ways: we can study the time dates at which the interactions occur and/or the interaction time spans. This thesis only focuses on the first time dimension and each interaction is assumed to be instantaneous, for simplicity. Hence, the network evolution is given by the interaction time dates only. In this framework, graphs can be used in two different ways to model networks. Discrete time […] Continuous time […]. In this thesis both these perspectives are adopted, alternatively. We consider new unsupervised methods to cluster the vertices of a graph into groups of homogeneous connection profiles. In this manuscript, the node groups are assumed to be time invariant to avoid possible identifiability issues. Moreover, the approaches that we propose aim to detect structural changes in the way the node clusters interact with each other. The building block of this thesis is the stochastic block model (SBM), a probabilistic approach initially used in social sciences. The standard SBM assumes that the nodes of a graph belong to hidden (disjoint) clusters and that the probability of observing an edge between two nodes only depends on their clusters. Since no further assumption is made on the connection probabilities, SBM is a very flexible model able to detect different network topologies (hubs, stars, communities, etc.)
Nori, Vijay S. "Algorithms for dynamic and stochastic logistics problems". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/24513.
Texto completo da fontePaltrinieri, Federico. "Modeling temporal networks with dynamic stochastic block models". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18805/.
Texto completo da fonteChung, Kun-Jen. "Some topics in risk-sensitive stochastic dynamic models". Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/28644.
Texto completo da fonteLoddo, Antonello. "Bayesian analysis of multivariate stochastic volatility and dynamic models". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4359.
Texto completo da fonteThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (April 26, 2007) Vita. Includes bibliographical references.
Foliente, Greg C. "Stochastic dynamic response of wood structural systems". Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-05042006-164535/.
Texto completo da fonteAhn, Kwangwon. "Dynamic stochastic general equilibrium models with money, default and collateral". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:78317412-e13d-4495-9665-340e777ab7b2.
Texto completo da fonteCherepnev, Alexey [Verfasser]. "Stochastic foundations of dynamic trade and labor market models / Alexey Cherepnev". Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2015. http://d-nb.info/1225685508/34.
Texto completo da fonteLivros sobre o assunto "Dynamic stochastic models"
Galindo Gil, Hamilton, Alexis Montecinos Bravo e Marco Antonio Ortiz Sosa. Dynamic Stochastic General Equilibrium Models. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58105-2.
Texto completo da fonteGong, Gang. Stochastic dynamic macroeconomics: Theory, numerics, and empirical evidence. New York: Oxford University Press, 2005.
Encontre o texto completo da fonteChatterjee, Partha. Convergence in a stochastic dynamic Heckscher-Ohlin model. Ottawa: Bank of Canada, 2006.
Encontre o texto completo da fontePfann, Gerard A. Dynamic modelling of stochastic demand for manufacturing employment. Berlin: Springer-Verlag, 1990.
Encontre o texto completo da fonteGong, Gang. Stochastic dynamic macroeconomics: Theory and empirical evidence. New York, NY: Oxford University Press, 2004.
Encontre o texto completo da fonteC, Colander David, ed. Post Walrasian macroeconomics: Beyond the dynamic stochastic general equilibrium model. Cambridge: Cambridge University Press, 2006.
Encontre o texto completo da fonteMerbis, Maarten Dirk. Optimal control for econometric models: An application of stochastic dynamic games. Amsterdam: Free University Press, 1986.
Encontre o texto completo da fonteRansbotham, Sam. Sequential grid computing: Models and computational experiments. Bangalore: Indian Institute of Management Bangalore, 2009.
Encontre o texto completo da fonteNijkamp, Peter. Spatial interaction and input-output models: A dynamic stochastic multi-objective framework. Amsterdam: Vrije Universiteit, Faculteit der Economische Wetenschappen en Econometrie, 1987.
Encontre o texto completo da fonteauthor, Muler Nora, ed. Stochastic optimization in insurance: A dynamic programming approach. New York, NY: Springer, 2014.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Dynamic stochastic models"
Boguslavskiy, Josif A. "Estimating the Parameters of Stochastic Models". In Dynamic Systems Models, 125–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_7.
Texto completo da fonteZhang, Zhe George. "Dynamic Optimization in Stochastic Models". In Fundamentals of Stochastic Models, 449–514. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003150060-10.
Texto completo da fonteGómez M., Guillermo L. "Stochastic control theory". In Dynamic Probabilistic Models and Social Structure, 401–19. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2524-6_9.
Texto completo da fonteBenaroya, Haym. "Random Eigenvalues and Structural Dynamic Models". In Stochastic Structural Dynamics 1, 11–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84531-4_2.
Texto completo da fonteChen, Huey-Kuo. "Stochastic/Dynamic User-Optimal Route Choice Model". In Dynamic Travel Choice Models, 229–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59980-4_12.
Texto completo da fonteRan, Bin, e David Boyce. "Instantaneous Stochastic Dynamic Route Choice Models". In Modeling Dynamic Transportation Networks, 211–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_10.
Texto completo da fonteRan, Bin, e David Boyce. "Ideal Stochastic Dynamic Route Choice Models". In Modeling Dynamic Transportation Networks, 181–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_9.
Texto completo da fonteRavishanker, Nalini, Balaji Raman e Refik Soyer. "Modeling Stochastic Volatility". In Dynamic Time Series Models using R-INLA, 197–204. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003134039-10.
Texto completo da fonteNijkamp, Peter, e Aura Reggiani. "Dynamic and Stochastic Spatial Interaction Models". In Interaction, Evolution and Chaos in Space, 89–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77509-3_5.
Texto completo da fonteTapiero, Charles S. "Dynamic Optimization". In Applied Stochastic Models and Control for Finance and Insurance, 237–74. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5823-1_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Dynamic stochastic models"
Zhao, Lang, Xueying Wang, Yizheng Li, Cheng Chen, Yawen Qian, Peng Du, Hongtao Xie, Chen Zhang e Zhiyu Wang. "Stochastic Dynamic Economic Dispatch Models of Ultra High Voltage AC-DC Hybrid Grids Based on Approximate Dynamic Programming". In 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE), 887–91. IEEE, 2024. https://doi.org/10.1109/epee63731.2024.10875448.
Texto completo da fonteRobinson, Jace, e Derek Doran. "Seasonality in dynamic stochastic block models". In WI '17: International Conference on Web Intelligence 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3106426.3109424.
Texto completo da fonteRey, Francesc, e Josep Sala-Alvarez. "Stochastic dynamic models in PHY abstraction". In 2013 Asilomar Conference on Signals, Systems and Computers. IEEE, 2013. http://dx.doi.org/10.1109/acssc.2013.6810577.
Texto completo da fonteGhorbanian, Parham, Subramanian Ramakrishnan e Hashem Ashrafiuon. "EEG Stochastic Nonlinear Oscillator Models for Alzheimer’s Disease". In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9676.
Texto completo da fonteChemistruck, Heather, e John B. Ferris. "Compact Models of Terrain Surfaces". In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4037.
Texto completo da fonteAlexandre, Dolgui,. "Stochastic Dynamic Pricing Models of Monopoly Systems". In Information Control Problems in Manufacturing, editado por Bakhtadze, Natalia, chair Dolgui, Alexandre e Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00243.
Texto completo da fonteSion, R., e J. Tatemura. "Dynamic stochastic models for workflow response optimization". In IEEE International Conference on Web Services (ICWS'05). IEEE, 2005. http://dx.doi.org/10.1109/icws.2005.50.
Texto completo da fonteKashib, T., e S. Amanetu. "Dynamic Data Integration in Stochastic Reservoir Models". In Canadian International Petroleum Conference. Petroleum Society of Canada, 2003. http://dx.doi.org/10.2118/2003-091.
Texto completo da fonteEliasi, Parisa A., e Sundeep Rangan. "Stochastic dynamic channel models for millimeter cellular systems". In 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015. http://dx.doi.org/10.1109/camsap.2015.7383773.
Texto completo da fonteKneser, R., e V. Steinbiss. "On the dynamic adaptation of stochastic language models". In Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319375.
Texto completo da fonteRelatórios de organizações sobre o assunto "Dynamic stochastic models"
Fernandez-Villaverde, Jesus, Pablo Guerrón-Quintana e Juan Rubio-Ramírez. Estimating Dynamic Equilibrium Models with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, setembro de 2012. http://dx.doi.org/10.3386/w18399.
Texto completo da fontePitarka, A. Testing Dynamic Earthquake Rupture Models Generated With Stochastic Stress Drop. Office of Scientific and Technical Information (OSTI), novembro de 2018. http://dx.doi.org/10.2172/1490953.
Texto completo da fonteJudd, Kenneth, Lilia Maliar e Serguei Maliar. How to Solve Dynamic Stochastic Models Computing Expectations Just Once. Cambridge, MA: National Bureau of Economic Research, setembro de 2011. http://dx.doi.org/10.3386/w17418.
Texto completo da fonteJudd, Kenneth, Lilia Maliar e Serguei Maliar. Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models. Cambridge, MA: National Bureau of Economic Research, agosto de 2009. http://dx.doi.org/10.3386/w15296.
Texto completo da fonteGhil, Michael, Mickael D. Chekroun, Dmitri Kondrashov, Michael K. Tippett, Andrew Robertson, Suzana J. Camargo, Mark Cane et al. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada572180.
Texto completo da fonteGelain, Paolo, e Pierlauro Lopez. A DSGE Model Including Trend Information and Regime Switching at the ZLB. Federal Reserve Bank of Cleveland, dezembro de 2023. http://dx.doi.org/10.26509/frbc-wp-202335.
Texto completo da fonteChen, Xin, Yanfeng Ouyang, Ebrahim Arian, Haolin Yang e Xingyu Ba. Modeling and Testing Autonomous and Shared Multimodal Mobility Services for Low-Density Rural Areas. Illinois Center for Transportation, agosto de 2022. http://dx.doi.org/10.36501/0197-9191/22-013.
Texto completo da fonteMalin, Benjamin, Dirk Krueger e Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, outubro de 2007. http://dx.doi.org/10.3386/t0345.
Texto completo da fonteMalin, Benjamin, Dirk Krueger e Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, outubro de 2007. http://dx.doi.org/10.3386/w13517.
Texto completo da fonteFernández-Villaverde, Jesús, Galo Nuño e Jesse Perla. Taming the curse of dimensionality: quantitative economics with deep learning. Madrid: Banco de España, novembro de 2024. http://dx.doi.org/10.53479/38233.
Texto completo da fonte