Livros sobre o tema "Dynamic machine learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores livros para estudos sobre o assunto "Dynamic machine learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.
Gultekin, San. Dynamic Machine Learning with Least Square Objectives. [New York, N.Y.?]: [publisher not identified], 2019.
Encontre o texto completo da fonteBennaceur, Amel, Reiner Hähnle e Karl Meinke, eds. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Texto completo da fonteIEEE, International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Encontre o texto completo da fonteHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49395-0.
Texto completo da fonteIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Encontre o texto completo da fonteIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Encontre o texto completo da fonteAchmad, Widodo, ed. Introduction of intelligent machine fault diagnosis and prognosis. New York: Nova Science Publishers, 2009.
Encontre o texto completo da fonteRussell, David W. The BOXES Methodology: Black Box Dynamic Control. London: Springer London, 2012.
Encontre o texto completo da fonteHayes-Roth, Barbara. An architecture for adaptive intelligent systems. Stanford, Calif: Stanford University, Dept. of Computer Science, 1993.
Encontre o texto completo da fonteDuriez, Thomas, Steven L. Brunton e Bernd R. Noack. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40624-4.
Texto completo da fonteChiroma, Haruna, Shafi’i M. Abdulhamid, Philippe Fournier-Viger e Nuno M. Garcia, eds. Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66288-2.
Texto completo da fonteLi, Fanzhang, Li Zhang e Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Encontre o texto completo da fonteLi, Fanzhang, Li Zhang e Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Encontre o texto completo da fonteLi, Fanzhang, Li Zhang e Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Encontre o texto completo da fonteMuneesawang, Paisarn, Ling Guan, Matthew Kyan e Kambiz Jarrah. Unsupervised Learning: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Encontre o texto completo da fonteMuneesawang, Paisarn, Ling Guan, Matthew Kyan e Kambiz Jarrah. Unsupervised Learning: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Encontre o texto completo da fonteJ, Walsh Thomas, Jonathan P. How, Alborz Geramifard, Stefanie Tellex e Girish Chowdhary. Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning. Now Publishers, 2013.
Encontre o texto completo da fonteMuneesawang, Paisarn, Ling Guan, Matthew Kyan e Kambiz Jarrah. Unervised Learning Via Self-Organization: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Encontre o texto completo da fonteLearning from Data Streams in Dynamic Environments. Springer, 2015.
Encontre o texto completo da fonteMachine Learning for Dynamic Software Analysis : Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, ... Papers. Springer, 2018.
Encontre o texto completo da fonteZeng, Tao, Tao Huang e Chuan Lu, eds. Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-554-2.
Texto completo da fontePowell, Warren B., Andrew G. Barto, Don Wunsch e Jennie Si. Handbook of Learning and Approximate Dynamic Programming. Wiley & Sons, Incorporated, John, 2012.
Encontre o texto completo da fonteHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer International Publishing AG, 2021.
Encontre o texto completo da fonteHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer International Publishing AG, 2020.
Encontre o texto completo da fonteLewis, Frank L., e Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Encontre o texto completo da fonteLewis, Frank L., e Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Encontre o texto completo da fonteLewis, Frank L., e Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Encontre o texto completo da fonteHeo, Wookjae. Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques. Springer International Publishing AG, 2020.
Encontre o texto completo da fonteHeo, Wookjae. Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques. Springer International Publishing AG, 2019.
Encontre o texto completo da fonteR Machine Learning by Example: Understand the Fundamentals of Machine Learning with R and Build Your Own Dynamic Algorithms to Tackle Complicated Real-World Problems Successfully. de Gruyter GmbH, Walter, 2016.
Encontre o texto completo da fonteRussell, David W. The BOXES Methodology: Black Box Dynamic Control. Springer, 2014.
Encontre o texto completo da fonteThe BOXES Methodology: Black Box Dynamic Control. Springer, 2012.
Encontre o texto completo da fontePickreign, Cynthia J. Riggle: A program for the dynamic conceptual time series analysis of hypervariate data and its application to ecotoxicology. 1995.
Encontre o texto completo da fonteAmunategui, Manuel. Python Web Work - Online Presence Powerhouse: Grow Audiences, Use Html5 Templates, Serve Dynamic Content, Build Machine Learning Web Apps, Conquer the World. Independently Published, 2020.
Encontre o texto completo da fonteSalin, Sandra, e Cathy Hampton, eds. Innovative language teaching and learning at university: facilitating transition from and to higher education. Research-publishing.net, 2022. http://dx.doi.org/10.14705/rpnet.2022.56.9782490057986.
Texto completo da fonteNoack, Bernd R., Steven L. Brunton e Thomas Duriez. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer, 2018.
Encontre o texto completo da fonteNoack, Bernd R., Steven L. Brunton e Thomas Duriez. Machine Learning Control - Taming Nonlinear Dynamics and Turbulence. Springer London, Limited, 2016.
Encontre o texto completo da fonteNoack, Bernd R., Steven L. Brunton e Thomas Duriez. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer, 2016.
Encontre o texto completo da fonteDecherchi, Sergio, Andrea Cavalli, Pratyush Tiwary e Francesca Grisoni, eds. Molecular Dynamics and Machine Learning in Drug Discovery. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-863-2.
Texto completo da fonteIordache, Octavian. Self-Evolvable Systems: Machine Learning in Social Media. Springer Berlin / Heidelberg, 2014.
Encontre o texto completo da fonteIordache, Octavian. Self-Evolvable Systems: Machine Learning in Social Media. Springer, 2012.
Encontre o texto completo da fonteHanson, Stephen José, Michael J. Kearns, Thomas Petsche e Ronald L. Rivest, eds. Computational Learning Theory and Natural Learning Systems, Volume 2. The MIT Press, 1994. http://dx.doi.org/10.7551/mitpress/2029.001.0001.
Texto completo da fonteBansal, Vinnie, e Aurelien Clere. Machine Learning with Dynamics 365 and Power Platform: The Ultimate Guide to Learning and Applying Machine Learning and Predictive Analytics. Wiley & Sons, Limited, John, 2022.
Encontre o texto completo da fonteUltimate Machine Learning Data Science: Statistical Methods for Building Trading Strategies to Machine Learning, Dynamical Systems, and Control for Beginners. Independently Published, 2022.
Encontre o texto completo da fonteKutz, J. Nathan, e Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
Encontre o texto completo da fonteKutz, J. Nathan, e Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022.
Encontre o texto completo da fonteKutz, J. Nathan, e Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
Encontre o texto completo da fonteData-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022.
Encontre o texto completo da fonteMitra, Bivas, Fakhteh Ghanbarnejad, Rishiraj Saha Roy, Fariba Karimi e Jean-Charles Delvenne. Dynamics On and Of Complex Networks III: Machine Learning and Statistical Physics Approaches. Springer, 2019.
Encontre o texto completo da fonte