Literatura científica selecionada sobre o tema "Dynamic Graph Metrics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Dynamic Graph Metrics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Dynamic Graph Metrics"
Sizemore, Ann E., e Danielle S. Bassett. "Dynamic graph metrics: Tutorial, toolbox, and tale". NeuroImage 180 (outubro de 2018): 417–27. http://dx.doi.org/10.1016/j.neuroimage.2017.06.081.
Texto completo da fonteDavis, Jacob D., e Eberhard O. Voit. "Metrics for regulated biochemical pathway systems". Bioinformatics 35, n.º 12 (14 de novembro de 2018): 2118–24. http://dx.doi.org/10.1093/bioinformatics/bty942.
Texto completo da fonteSunarmodo, Wismu, e Bayu Distiawan Trisedya. "Anchored Self-Supervised Dynamic Graph Representation Learning for Aviation Data as A Fast Economic Indicator". International Journal on Advanced Science, Engineering and Information Technology 14, n.º 6 (20 de dezembro de 2024): 1842–48. https://doi.org/10.18517/ijaseit.14.6.20170.
Texto completo da fonteAntal, Gábor, Zoltán Tóth, Péter Hegedűs e Rudolf Ferenc. "Enhanced Bug Prediction in JavaScript Programs with Hybrid Call-Graph Based Invocation Metrics". Technologies 9, n.º 1 (30 de dezembro de 2020): 3. http://dx.doi.org/10.3390/technologies9010003.
Texto completo da fonteWang, Mingjie, Yifan Huo, Junhong Zheng e Lili He. "SC-TKGR: Temporal Knowledge Graph-Based GNN for Recommendations in Supply Chains". Electronics 14, n.º 2 (7 de janeiro de 2025): 222. https://doi.org/10.3390/electronics14020222.
Texto completo da fonteRuf, Verena, Anna Horrer, Markus Berndt, Sarah Isabelle Hofer, Frank Fischer, Martin R. Fischer, Jan M. Zottmann, Jochen Kuhn e Stefan Küchemann. "A Literature Review Comparing Experts’ and Non-Experts’ Visual Processing of Graphs during Problem-Solving and Learning". Education Sciences 13, n.º 2 (19 de fevereiro de 2023): 216. http://dx.doi.org/10.3390/educsci13020216.
Texto completo da fonteLiu, Liu, Sibren Isaacman e Ulrich Kremer. "An Adaptive Application Framework with Customizable Quality Metrics". ACM Transactions on Design Automation of Electronic Systems 27, n.º 2 (31 de março de 2022): 1–33. http://dx.doi.org/10.1145/3477428.
Texto completo da fonteYu, Mingqin, Fethi A. Rabhi e Madhushi Bandara. "Ontology-Driven Architecture for Managing Environmental, Social, and Governance Metrics". Electronics 13, n.º 9 (29 de abril de 2024): 1719. http://dx.doi.org/10.3390/electronics13091719.
Texto completo da fonteChen, Yuhang, Jiaxin Jiang, Shixuan Sun, Bingsheng He e Min Chen. "RUSH: Real-Time Burst Subgraph Detection in Dynamic Graphs". Proceedings of the VLDB Endowment 17, n.º 11 (julho de 2024): 3657–65. http://dx.doi.org/10.14778/3681954.3682028.
Texto completo da fonteMu, Bo, Guohang Tian, Gengyu Xin, Miao Hu, Panpan Yang, Yiwen Wang, Hao Xie, Audrey L. Mayer e Yali Zhang. "Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China". Land 10, n.º 5 (1 de maio de 2021): 471. http://dx.doi.org/10.3390/land10050471.
Texto completo da fonteTeses / dissertações sobre o assunto "Dynamic Graph Metrics"
Bridonneau, Vincent. "Generation and Analysis of Dynamic Graphs". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH23.
Texto completo da fonteIn this thesis, we investigate iterative processes producing a flow of graphs. These processes findapplications both in complex networks and time-varying graphs. Starting from an initial configurationcalled a seed, these processes produce a continuous flow of graphs. A key question arises when theseprocesses impose no constraints on the size of the generated graphs: under what conditions can we ensurethat the graphs do not become empty? And how can we account for the changes between successive stepsof the process? To address the first question, we introduced the concept of sustainability, which verifieswhether an iterative process is likely to produce graphs with periodic behaviors. We defined and studied agraph generator that highlights the many challenges encountered when exploring this notion. Regardingthe second question, we designed a metric to quantify the changes occurring between two consecutive stepsof the process. This metric was tested on various generators as well as on real-world data, demonstratingits ability to capture the dynamics of a network, whether artificial or real. The study of these two conceptshas opened the door to many new questions and strengthened the connections between complex networkanalysis and temporal graph theory
Saman, Nariman Goran. "A Framework for Secure Structural Adaptation". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78658.
Texto completo da fonteNoharet, Léo, e Anton Fu. "Using simulated dynamics and graph metrics to compare brain networks of MCI patients and healthy control subjects". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301839.
Texto completo da fontePå senare år har flera olika metoder för att jämföra hjärnans nätverk framställts med hjälp av grafteori och olika statiska graf mätetal. En relativt outforskad jämförelsemetod är att jämföra påverkan som stimulanssignaler har på hjärnan med hjälp av att simulera hjärnans systemdynamik med stimulanssignaler av olika frekvenser som indata in i hjärnnätverket. Eftersom hjärnaktivitetssignaler är beroende av hjärnans struktur, kan man studera hjärnaktivitetssignaler tillsammans med hjärnans struktur. Följaktligen, ämnar denna studie att jämföra hjärnnätverken av patienter med mild kognitiv nedsättning (MCI) och av friska kontrolldeltagare genom att jämföra statiska graf mätetal och den påverkan som simulerade stimulanssignaler av varierande frekvenser har på hjärnan. Detta gjordes genom att jämföra graf mätetalen characteristic path length, clustering koefficient, small worldness och den genomsnittliga grad distributionen, samt att jämföra Fourier transform amplituden vid frekvensen av stimulanssignalen av varje deltagares hjärnnätverk vid sex olika tidpunkter. Studiens resultat visade på att de statiska graf mätetalen small worldness och clustering- koefficient kunde måttligen skilja grupperna. Skillnader mellan de två deltagargrupperna kunde även observeras vid vissa individuella hjärnregioner som utgör hjärnnätverken när Fourier transform amplituden vid stimulanssignalens frekvens användes som mätetal. Eftersom mätetalets resultater inte var homogena över hela datamängden, kan inte vi dra slutsatser om mätetalets förmåga att urskilja MCI patienter från friska kontrolldeltagare. Dock har studiens resultat visat tillräckligt övertalande tecken på att simuleringen av hjärnans systemdynamik med stimulanssignaler skulle kunne urskilja hjärnnätverk för att uppmana till vidare forskning kring denna jämförelsemetod.
Hiransakolwong, Nualsawat. "AUTOMATIC ANNOTATION OF DATABASE IMAGES FOR QUERY-BY-CONCEPT". Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2639.
Texto completo da fontePh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
Zhao, Z. W., e I.-Ming Chen. "Optimizing the Dynamic Distribution of Data-stream for High Speed Communications". 2004. http://hdl.handle.net/1721.1/7459.
Texto completo da fonteSingapore-MIT Alliance (SMA)
Jasinski, Jakub. "Hrushovski and Ramsey Properties of Classes of Finite Inner Product Structures, Finite Euclidean Metric Spaces, and Boron Trees". Thesis, 2011. http://hdl.handle.net/1807/29762.
Texto completo da fonteLivros sobre o assunto "Dynamic Graph Metrics"
Harmonic Analysis. American Mathematical Society, 2018.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Dynamic Graph Metrics"
Meidiana, Amyra, Seok-Hee Hong e Peter Eades. "New Quality Metrics for Dynamic Graph Drawing". In Lecture Notes in Computer Science, 450–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-68766-3_35.
Texto completo da fonteGain, Ayan, e Mridul Sankar Barik. "Attack Graph Based Security Metrics for Dynamic Networks". In Information Systems Security, 109–28. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-49099-6_7.
Texto completo da fonteVincent, Bridonneau, Guinand Frédéric e Pigné Yoann. "DynamicScore: A Novel Metric for Quantifying Graph Dynamics". In Complex Networks & Their Applications XII, 435–44. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53499-7_35.
Texto completo da fonteO’ Mahony, Niall, Anshul Awasthi, Joseph Walsh e Daniel Riordan. "Latent Space Cartography for Geometrically Enriched Latent Spaces". In Communications in Computer and Information Science, 488–501. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26438-2_38.
Texto completo da fonteKim, Woojin, Facundo Mémoli e Zane Smith. "Analysis of Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence". In Topological Data Analysis, 371–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43408-3_14.
Texto completo da fonteBurattin, Andrea, Hugo A. López e Lasse Starklit. "Uncovering Change: A Streaming Approach for Declarative Processes". In Lecture Notes in Business Information Processing, 158–70. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27815-0_12.
Texto completo da fonteWang, Di. "Explainable Deep Reinforcement Learning for Knowledge Graph Reasoning". In Recent Developments in Machine and Human Intelligence, 168–83. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9189-8.ch012.
Texto completo da fonteBeynier, Aurélie, Jean-Guy Mailly, Nicolas Maudet e Anaëlle Wilczynski. "Explaining the Lack of Locally Envy-Free Allocations". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240900.
Texto completo da fonteMarmier, Arnaud. "Anomalous Mechanical Behaviour Arising From Framework Flexibility". In Mechanical Behaviour of Metal – Organic Framework Materials, 65–112. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839166594-00065.
Texto completo da fonteTauch, Sotharith, William Liu e Russel Pears. "Measuring Cascading Failures in Smart Grid Networks". In Smart Grid as a Solution for Renewable and Efficient Energy, 208–25. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0072-8.ch009.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Dynamic Graph Metrics"
Cai, Borui, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li e Jianxin Li. "Temporal Knowledge Graph Completion: A Survey". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/734.
Texto completo da fonteMarsili, Valentina, Stefano Alvisi, Filomena Maietta, Caterina Capponi, Silvia Meniconi, Bruno Brunone e Marco Franchini. "Characterizing the effects of water distribution system topology modifications on its dynamic behaviour through connectivity metrics". In 2nd WDSA/CCWI Joint Conference. València: Editorial Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/wdsa-ccwi2022.2022.14016.
Texto completo da fonteKotecha, Maulik C., Wanyu Xu e Daniel A. McAdams. "Exploring a Graph Theoretic Approach for the Quantitative Comparison of Digital Twin Designs". In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-142928.
Texto completo da fonteZhao, Sheng, Baisravan HomChaudhuri e Manish Kumar. "A Method for Distributed Optimization for Task Allocation". In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2694.
Texto completo da fonteMorozov, Andrey, Mihai A. Diaconeasa e Mikael Steurer. "A Hybrid Methodology for Model-Based Probabilistic Resilience Evaluation of Dynamic Systems". In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23789.
Texto completo da fonteDELO, GIULIA, CECILIA SURACE, KEITH WORDEN e DANIEL S. BRENNAN. "ON THE INFLUENCE OF STRUCTURAL ATTRIBUTES FOR ASSESSING SIMILARITY IN POPULATION-BASED STRUCTURAL HEALTH MONITORING". In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/36904.
Texto completo da fontePopov, Anton I., Igor Y. Popov, Dmitri S. Nikiforov e Irina V. Blinova. "Time-dependent metric graph: Wave dynamics". In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114299.
Texto completo da fonteZheng, Xiaolin, Jiajie Su, Weiming Liu e Chaochao Chen. "DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain Sequential Recommendation". In MM '22: The 30th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503161.3548072.
Texto completo da fonteLouca, Loucas S., e Evagoras Xydas. "Model Reduction of Modal Representations". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14097.
Texto completo da fonteMcCain, B. A., e A. G. Stefanopoulou. "Order Reduction for a Control-Oriented Model of the Water Dynamics in Fuel Cells". In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97075.
Texto completo da fonte