Artigos de revistas sobre o tema "Dynamic cracking"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Dynamic cracking".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Carpinteri, A., G. Lacidogna, M. Corrado e E. Di Battista. "Cracking and crackling in concrete-like materials: A dynamic energy balance". Engineering Fracture Mechanics 155 (abril de 2016): 130–44. http://dx.doi.org/10.1016/j.engfracmech.2016.01.013.
Texto completo da fonteKrupp, Ulrich. "Dynamic Embrittlement - Diffusion-Induced Intergranular Cracking". Defect and Diffusion Forum 258-260 (outubro de 2006): 192–98. http://dx.doi.org/10.4028/www.scientific.net/ddf.258-260.192.
Texto completo da fonteIslam, M. R., S. A. Kalevela, J. A. Rivera e T. B. Rashid. "Dynamic Modulus and Field Performance of Cold-in-Place Recycled Asphalt Pavement". Journal of Engineering Sciences 6, n.º 2 (2019): b1—b7. http://dx.doi.org/10.21272/10.21272/jes.2019.6(2).b1.
Texto completo da fonteWang, Yongfei, Junru Li, Zhenyu Wu, Jiankang Chen, Chuan Yin e Kang Bian. "Dynamic Risk Evaluation and Early Warning of Crest Cracking for High Earth-Rockfill Dams through Bayesian Parameter Updating". Applied Sciences 10, n.º 21 (29 de outubro de 2020): 7627. http://dx.doi.org/10.3390/app10217627.
Texto completo da fonteDarowicki, K., J. Orlikowski e A. Arutunow. "Detection of stress corrosion cracking dynamics by dynamic electrochemical impedance spectroscopy". Corrosion Engineering, Science and Technology 39, n.º 3 (setembro de 2004): 255–60. http://dx.doi.org/10.1179/147842204x2844.
Texto completo da fonteZhao, Chuanyu, Chaowei Liu e Qiang Xu. "Dynamic Scheduling for Ethylene Cracking Furnace System". Industrial & Engineering Chemistry Research 50, n.º 21 (2 de novembro de 2011): 12026–40. http://dx.doi.org/10.1021/ie200318p.
Texto completo da fonteZhang, Yiming, e Xiaoying Zhuang. "Cracking elements method for dynamic brittle fracture". Theoretical and Applied Fracture Mechanics 102 (agosto de 2019): 1–9. http://dx.doi.org/10.1016/j.tafmec.2018.09.015.
Texto completo da fonteShaheen-Mualim, Merna, Anna Gleizer e Dov Sherman. "Dynamic stress corrosion cracking in silicon crystal". International Journal of Fracture 219, n.º 2 (16 de agosto de 2019): 161–74. http://dx.doi.org/10.1007/s10704-019-00387-5.
Texto completo da fonteCui, Y. "Dynamic matrix cracking in fiber reinforced ceramics". Journal of the Mechanics and Physics of Solids 43, n.º 12 (dezembro de 1995): 1875–86. http://dx.doi.org/10.1016/0022-5096(95)00060-v.
Texto completo da fonteLi, Yong, Haoyue Sui, Ruilin Hu, Fangpeng Cui, Yidi Qiu e Wei Gao. "Study on the Effect of Rock Mass Structure on CO2 Transient Fissure Excavation". Applied Sciences 13, n.º 23 (25 de novembro de 2023): 12666. http://dx.doi.org/10.3390/app132312666.
Texto completo da fonteJavad Taherinezhad, M. Sofi, Priyan Mendis e Tuan Ngo. "Strain Rates in Prestressed Concrete Sleepers and Effects on Cracking Loads". Electronic Journal of Structural Engineering 17 (1 de janeiro de 2017): 65–75. http://dx.doi.org/10.56748/ejse.17220.
Texto completo da fonteMirza, M. Saeed, O. Ferdjani, A. Hadj-Arab, K. Joucdar, A. Khaled e A. G. Razaqpur. "An experimental study of static and dynamic responses of prestressed concrete box irder bridges". Canadian Journal of Civil Engineering 17, n.º 3 (1 de junho de 1990): 481–93. http://dx.doi.org/10.1139/l90-052.
Texto completo da fonteGhosh, A., e V. Kumar. "Computational studies on fragmentation of brittle materials". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, n.º 8 (21 de novembro de 2012): 1650–64. http://dx.doi.org/10.1177/0954406212466766.
Texto completo da fonteLiu, Xian Peng, Yang Han e Hong Biao Liu. "Researches on High-Piled Wharf Cantilever Slab Cracking Causes and Reinforcement Measures". Advanced Materials Research 831 (dezembro de 2013): 186–90. http://dx.doi.org/10.4028/www.scientific.net/amr.831.186.
Texto completo da fonteParab, Niranjan D., Zherui Guo, Matthew Hudspeth, Benjamin Claus, Boon Him Lim, Tao Sun, Xianghui Xiao, Kamel Fezzaa e Weinong W. Chen. "In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2085 (28 de janeiro de 2017): 20160178. http://dx.doi.org/10.1098/rsta.2016.0178.
Texto completo da fonteYang, Bin, Qin Shou Huang, Xin Wang Qiu e Hua Xu. "Dynamic Response Analysis of Stress Intensity Factors of Reflective Cracking in Asphalt Overlay Suffer Wheel Load". Advanced Materials Research 217-218 (março de 2011): 187–90. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.187.
Texto completo da fonteYe, Wenya, Wenzhi Yuan e Qun Yang. "Asphalt Pavement Transverse Cracking Detection Based on Vehicle Dynamic Response". Applied Sciences 13, n.º 22 (20 de novembro de 2023): 12527. http://dx.doi.org/10.3390/app132212527.
Texto completo da fonteHan, Yuanfei, Xianglong Sun, Pinwang Liu, Guangfa Huang, Lv Xiao e Weijie Lu. "Deformation and fracture behavior of in-situ Ti composites reinforced with TiB/nano-sized particles". MATEC Web of Conferences 321 (2020): 08004. http://dx.doi.org/10.1051/matecconf/202032108004.
Texto completo da fonteChen, Xiying, Erin Karasz, Nilesh Badwe e Karl Sieradzki. "Dynamic fracture and dealloying induced stress-corrosion cracking". Corrosion Science 187 (julho de 2021): 109503. http://dx.doi.org/10.1016/j.corsci.2021.109503.
Texto completo da fonteYankelevsky, David Z., e Itzhak Avnon. "Controlled Dynamic Cracking of High‐Strength Concrete Specimens". Journal of Materials in Civil Engineering 6, n.º 4 (novembro de 1994): 564–77. http://dx.doi.org/10.1061/(asce)0899-1561(1994)6:4(564).
Texto completo da fonteKumar, V., e A. Ghosh. "Non-linear dynamic fragmentation using Cracking Particles Method". Computational Materials Science 98 (fevereiro de 2015): 117–22. http://dx.doi.org/10.1016/j.commatsci.2014.10.004.
Texto completo da fonteAvnon, Itzhak, David Z. Yankelevsky e C. H. Jaegermann. "Controlled dynamic cracking of hardened cement paste specimens". Engineering Fracture Mechanics 40, n.º 3 (janeiro de 1991): 667–79. http://dx.doi.org/10.1016/0013-7944(91)90159-x.
Texto completo da fonteWang, S. "Meshfree cohesive cracking method for dynamic material failure". International Journal of Mechanics and Materials in Design 6, n.º 2 (10 de fevereiro de 2010): 103–11. http://dx.doi.org/10.1007/s10999-010-9109-3.
Texto completo da fonteGhashghaee, M., e R. Karimzadeh. "Dynamic Modeling and Simulation of Steam Cracking Furnaces". Chemical Engineering & Technology 30, n.º 7 (julho de 2007): 835–43. http://dx.doi.org/10.1002/ceat.200700028.
Texto completo da fonteF. Daneshjoo e A. Gharighoran. "Experimental and theoretical dynamic system identification of damaged RC beams". Electronic Journal of Structural Engineering 8 (1 de junho de 2008): 29–39. http://dx.doi.org/10.56748/ejse.897.
Texto completo da fonteLuo, Yi, e Xin Ping Li. "Numerical Simulation Study of Crack Development Induced by Transient Release of Excavation Load during Deep Underground Cavern". Applied Mechanics and Materials 638-640 (setembro de 2014): 851–57. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.851.
Texto completo da fonteNanchari, K. "Linear Analysis of Tall Buildings and Tension Cracking of Shear Walls". International Journal for Research in Applied Science and Engineering Technology 12, n.º 6 (30 de junho de 2024): 1327–45. http://dx.doi.org/10.22214/ijraset.2024.63316.
Texto completo da fonteRao, Si Xian, Su Ping Yang, Ji Bin Tong e Jing Ru Wang. "Cracking Behavior of Oxide Films under Applied Stress". Advanced Materials Research 284-286 (julho de 2011): 671–75. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.671.
Texto completo da fonteZhao, Tao, Gengshe Yang, Lei Wang, Hailiang Jia e Yuzhe Qiao. "Dynamic Splitting Behavior and the Constitutive Relationship of Frozen Sandstone Containing a Single Fissure". Shock and Vibration 2021 (21 de abril de 2021): 1–13. http://dx.doi.org/10.1155/2021/6661037.
Texto completo da fonteLana, Shirley Savet, Hiroomi Homma e Kohji Nakazato. "Viscoelastic Effect on the Fracture Toughness of GFRP: Experimental Approach". Key Engineering Materials 306-308 (março de 2006): 745–50. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.745.
Texto completo da fonteChen, Aijun, Chaohua Li, Shanshan Zhao, Bai Yang e Chuanyang Ding. "Study on the Dynamic Mechanism of the Desiccation Crack Initiation and Propagation in Red Clay". Sustainability 15, n.º 14 (18 de julho de 2023): 11156. http://dx.doi.org/10.3390/su151411156.
Texto completo da fonteTaketomi, S., A. Toshimitsu Yokobori Jr. e Tetsuo Shoji. "Mechanism of Hydrogen Embrittlement Due to the Interaction of a Crack, Moving Dislocations and Hydrogen Cluster". Key Engineering Materials 261-263 (abril de 2004): 937–42. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.937.
Texto completo da fonteFeng, Weiying, Daniel Bonamy, Fabrice Célarié, Paul C. M. Fossati, Stéphane Gossé, Patrick Houizot e Cindy L. Rountree. "Stress Corrosion Cracking in Amorphous Phase Separated Oxide Glasses: A Holistic Review of Their Structures, Physical, Mechanical and Fracture Properties". Corrosion and Materials Degradation 2, n.º 3 (23 de julho de 2021): 412–46. http://dx.doi.org/10.3390/cmd2030022.
Texto completo da fonteNaumenko, V. V., e A. V. Shiyan. "Cryogenic-alloy strength and cracking resistance under dynamic loading". Strength of Materials 24, n.º 9 (setembro de 1992): 568–72. http://dx.doi.org/10.1007/bf00773131.
Texto completo da fonteEdwin, Emil H., e Jens G. Balchen. "Dynamic Optimization and Production Planning of Thermal Cracking Operation". Modeling, Identification and Control: A Norwegian Research Bulletin 24, n.º 2 (2003): 99–113. http://dx.doi.org/10.4173/mic.2003.2.3.
Texto completo da fonteLee, Jeffrey L. Y., Dar-Hao Chen, Kenneth H. Stokoe e Thomas Scullion. "Evaluating Potential for Reflection Cracking with Rolling Dynamic Deflectometer". Transportation Research Record: Journal of the Transportation Research Board 1869, n.º 1 (janeiro de 2004): 16–24. http://dx.doi.org/10.3141/1869-02.
Texto completo da fonteZhang, Shujing, Sujing Wang e Qiang Xu. "Emission Constrained Dynamic Scheduling for Ethylene Cracking Furnace System". Industrial & Engineering Chemistry Research 56, n.º 5 (31 de janeiro de 2017): 1327–40. http://dx.doi.org/10.1021/acs.iecr.6b02822.
Texto completo da fonteLópez-Isunza, Felipe. "Dynamic modelling of an industrial fluid catalytic cracking unit". Computers & Chemical Engineering 16 (maio de 1992): S139—S148. http://dx.doi.org/10.1016/s0098-1354(09)80016-1.
Texto completo da fonteHan, In-Su, James B. Riggs e Cbang-Bock Chung. "Dynamic matrix control of a fluidized catalytic cracking process". IFAC Proceedings Volumes 34, n.º 25 (junho de 2001): 281–86. http://dx.doi.org/10.1016/s1474-6670(17)33837-5.
Texto completo da fonteZacharopoulos, N., D. J. Srolovitz e R. Lesar. "Dynamic simulation of dislocation microstructures in Mode III cracking". Acta Materialia 45, n.º 9 (setembro de 1997): 3745–63. http://dx.doi.org/10.1016/s1359-6454(97)00029-3.
Texto completo da fonteEdwin, Emil H., e Jens G. Balchen. "Dynamic optimization and production planning of thermal cracking operation". Chemical Engineering Science 56, n.º 3 (fevereiro de 2001): 989–97. http://dx.doi.org/10.1016/s0009-2509(00)00314-6.
Texto completo da fonteConnolly, A. M., E. Hinton e A. R. Luxmoore. "Finite-element modelling of dynamic cracking in wide plates". Engineering Fracture Mechanics 23, n.º 1 (janeiro de 1986): 299–309. http://dx.doi.org/10.1016/0013-7944(86)90194-3.
Texto completo da fonteBožičevic, J., e D. Lukec. "Dynamic mathematical model of the fluid catalytic cracking process". Transactions of the Institute of Measurement and Control 9, n.º 1 (janeiro de 1987): 8–12. http://dx.doi.org/10.1177/014233128700900102.
Texto completo da fonteZheng, Y. Y. "Dynamic modeling and simulation of a catalytic cracking unit". Computers & Chemical Engineering 18, n.º 1 (janeiro de 1994): 39–44. http://dx.doi.org/10.1016/0098-1354(94)85021-6.
Texto completo da fonteSong, Jeong-Hoon, e Ted Belytschko. "Cracking node method for dynamic fracture with finite elements". International Journal for Numerical Methods in Engineering 77, n.º 3 (15 de janeiro de 2009): 360–85. http://dx.doi.org/10.1002/nme.2415.
Texto completo da fonteLiu, Guanzhi, Xinfu Pang e Jishen Wan. "A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments". Mathematics 12, n.º 14 (22 de julho de 2024): 2285. http://dx.doi.org/10.3390/math12142285.
Texto completo da fonteJiang, Ze Zhong, Tao Xie, Yan Jun Qiu e Bo Lan. "Crack Propagation Behavior of Asphalt Concrete; Part II: A Study into Influence of Loading Rates". Key Engineering Materials 385-387 (julho de 2008): 301–4. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.301.
Texto completo da fonteShinozaki, K., M. Yamamoto, A. Kawasaki, T. Tamura e Peng Wen. "Development of Evaluation Method for Solidification Cracking Susceptibility of Inconel600/SUS347 Dissimilar Laser Weld Metal by In-Situ Observation". Materials Science Forum 580-582 (junho de 2008): 49–52. http://dx.doi.org/10.4028/www.scientific.net/msf.580-582.49.
Texto completo da fonteCheng, Gang, Yong Zheng, Jie Yu, Jun Liu e Xinhe Hu. "Investigation of the Fatigue Life of Bottom-Up Cracking in Asphalt Concrete Pavements". Applied Sciences 12, n.º 23 (26 de novembro de 2022): 12119. http://dx.doi.org/10.3390/app122312119.
Texto completo da fonteGrace, Nabil F., e John B. Kennedy. "Dynamic response of two-span continuous composite bridges". Canadian Journal of Civil Engineering 15, n.º 4 (1 de agosto de 1988): 579–88. http://dx.doi.org/10.1139/l88-078.
Texto completo da fonte