Artigos de revistas sobre o tema "Dynamic coacervates"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Dynamic coacervates".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Furlani, Franco, Pietro Parisse e Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates". Molecules 25, n.º 5 (27 de fevereiro de 2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Texto completo da fonteZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao e Weizheng Sun. "Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates". Food Hydrocolloids 124 (março de 2022): 107339. http://dx.doi.org/10.1016/j.foodhyd.2021.107339.
Texto completo da fonteVecchies, Federica, Pasquale Sacco, Eleonora Marsich, Giuseppe Cinelli, Francesco Lopez e Ivan Donati. "Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates". Polymers 12, n.º 4 (13 de abril de 2020): 897. http://dx.doi.org/10.3390/polym12040897.
Texto completo da fonteAponte-Rivera, Christian, e Michael Rubinstein. "Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes". Macromolecules 54, n.º 4 (29 de janeiro de 2021): 1783–800. http://dx.doi.org/10.1021/acs.macromol.0c01393.
Texto completo da fonteMohanty, B., V. K. Aswal, P. S. Goyal e H. B. Bohidar. "Small-angle neutron and dynamic light scattering study of gelatin coacervates". Pramana 63, n.º 2 (agosto de 2004): 271–76. http://dx.doi.org/10.1007/bf02704984.
Texto completo da fonteLin, Ya’nan, Hairong Jing, Zhijun Liu, Jiaxin Chen e Dehai Liang. "Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions". Langmuir 36, n.º 7 (31 de janeiro de 2020): 1709–17. http://dx.doi.org/10.1021/acs.langmuir.9b03561.
Texto completo da fonteWang, Lechuan, Mengzhuo Liu, Panpan Guo, Huajiang Zhang, Longwei Jiang, Ning Xia, Li Zheng, Qian Cui e Shihui Hua. "Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes". Food Chemistry 414 (julho de 2023): 135718. http://dx.doi.org/10.1016/j.foodchem.2023.135718.
Texto completo da fonteFurlani, Franco, Ivan Donati, Eleonora Marsich e Pasquale Sacco. "Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition". Colloids and Interfaces 4, n.º 1 (2 de março de 2020): 12. http://dx.doi.org/10.3390/colloids4010012.
Texto completo da fonteBohidar, H., P. L. Dubin, P. R. Majhi, C. Tribet e W. Jaeger. "Effects of Protein−Polyelectrolyte Affinity and Polyelectrolyte Molecular Weight on Dynamic Properties of Bovine Serum Albumin−Poly(diallyldimethylammonium chloride) Coacervates". Biomacromolecules 6, n.º 3 (maio de 2005): 1573–85. http://dx.doi.org/10.1021/bm049174p.
Texto completo da fonteDanielsen, Scott P. O., James McCarty, Joan-Emma Shea, Kris T. Delaney e Glenn H. Fredrickson. "Molecular design of self-coacervation phenomena in block polyampholytes". Proceedings of the National Academy of Sciences 116, n.º 17 (4 de abril de 2019): 8224–32. http://dx.doi.org/10.1073/pnas.1900435116.
Texto completo da fonteBos, Inge, Eline Brink, Lucile Michels e Joris Sprakel. "DNA dynamics in complex coacervate droplets and micelles". Soft Matter 18, n.º 10 (2022): 2012–27. http://dx.doi.org/10.1039/d1sm01787j.
Texto completo da fonteTom, Jenna K. A., e Ashok A. Deniz. "Complex dynamics of multicomponent biological coacervates". Current Opinion in Colloid & Interface Science 56 (dezembro de 2021): 101488. http://dx.doi.org/10.1016/j.cocis.2021.101488.
Texto completo da fontePeixoto, Paulo D. S., Guilherme M. Tavares, Thomas Croguennec, Aurélie Nicolas, Pascaline Hamon, Claire Roiland e Saïd Bouhallab. "Structure and Dynamics of Heteroprotein Coacervates". Langmuir 32, n.º 31 (26 de julho de 2016): 7821–28. http://dx.doi.org/10.1021/acs.langmuir.6b01015.
Texto completo da fonteWang, Shengbo, Changlong Chen, Bor-Jier Shiau e Jeffrey H. Harwell. "Counterion binding on coacervation of dioctyl sulfosuccinate in aqueous sodium chloride". Soft Matter 15, n.º 18 (2019): 3771–78. http://dx.doi.org/10.1039/c8sm02531b.
Texto completo da fonteKausik, Ravinath, Aasheesh Srivastava, Peter A. Korevaar, Galen Stucky, J. Herbert Waite e Songi Han. "Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced1H NMR". Macromolecules 42, n.º 19 (13 de outubro de 2009): 7404–12. http://dx.doi.org/10.1021/ma901137g.
Texto completo da fonteKausik, Ravinath, Aasheesh Srivastava, Peter A. Korevaar, Galen Stucky, J. Herbert Waite e Songi Han. "Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced1H NMR". Macromolecules 43, n.º 6 (23 de março de 2010): 3122. http://dx.doi.org/10.1021/ma902825f.
Texto completo da fonteArmstrong, James P. K., Sam N. Olof, Monika D. Jakimowicz, Anthony P. Hollander, Stephen Mann, Sean A. Davis, Mervyn J. Miles, Avinash J. Patil e Adam W. Perriman. "Cell paintballing using optically targeted coacervate microdroplets". Chemical Science 6, n.º 11 (2015): 6106–11. http://dx.doi.org/10.1039/c5sc02266e.
Texto completo da fonteKaroui, Hedi, Marianne J. Seck e Nicolas Martin. "Self-programmed enzyme phase separation and multiphase coacervate droplet organization". Chemical Science 12, n.º 8 (2021): 2794–802. http://dx.doi.org/10.1039/d0sc06418a.
Texto completo da fonteLambden, Edward, e Martin B. Ulmschneider. "Coarse grained antimicrobial coacervated nanoparticle dynamics". Biophysical Journal 122, n.º 3 (fevereiro de 2023): 371a. http://dx.doi.org/10.1016/j.bpj.2022.11.2044.
Texto completo da fonteKayitmazer, A. Basak, Himadri B. Bohidar, Kevin W. Mattison, Arijit Bose, Jayashri Sarkar, Akihito Hashidzume, Paul S. Russo, Werner Jaeger e Paul L. Dubin. "Mesophase separation and probe dynamics in protein–polyelectrolyte coacervates". Soft Matter 3, n.º 8 (2007): 1064–76. http://dx.doi.org/10.1039/b701334e.
Texto completo da fonteYu, Boyuan, Phillip M. Rauscher, Nicholas E. Jackson, Artem M. Rumyantsev e Juan J. de Pablo. "Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates". ACS Macro Letters 9, n.º 9 (26 de agosto de 2020): 1318–24. http://dx.doi.org/10.1021/acsmacrolett.0c00522.
Texto completo da fonteFighir, Daniela, Carmen Paduraru, Ramona Ciobanu, Florin Bucatariu, Oana Plavan, Andreea Gherghel, George Barjoveanu, Marcela Mihai e Carmen Teodosiu. "Removal of Diclofenac and Heavy Metal Ions from Aqueous Media Using Composite Sorbents in Dynamic Conditions". Nanomaterials 14, n.º 1 (21 de dezembro de 2023): 33. http://dx.doi.org/10.3390/nano14010033.
Texto completo da fonteOrtony, Julia H., Dong Soo Hwang, John M. Franck, J. Herbert Waite e Songi Han. "Asymmetric Collapse in Biomimetic Complex Coacervates Revealed by Local Polymer and Water Dynamics". Biomacromolecules 14, n.º 5 (19 de abril de 2013): 1395–402. http://dx.doi.org/10.1021/bm4000579.
Texto completo da fonteReichheld, Sean E., Lisa D. Muiznieks, Fred W. Keeley e Simon Sharpe. "Direct observation of structure and dynamics during phase separation of an elastomeric protein". Proceedings of the National Academy of Sciences 114, n.º 22 (15 de maio de 2017): E4408—E4415. http://dx.doi.org/10.1073/pnas.1701877114.
Texto completo da fonteArfin, Najmul, Avinash Chand Yadav e H. B. Bohidar. "Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates". AIP Advances 3, n.º 11 (novembro de 2013): 112108. http://dx.doi.org/10.1063/1.4830281.
Texto completo da fonteWee, Wen Ann, Hiroshi Sugiyama e Soyoung Park. "Photoswitchable single-stranded DNA-peptide coacervate formation as a dynamic system for reaction control". iScience 24, n.º 12 (dezembro de 2021): 103455. http://dx.doi.org/10.1016/j.isci.2021.103455.
Texto completo da fonteKim, Jung-Min, Tae-Young Heo e Soo-Hyung Choi. "Structure and Relaxation Dynamics for Complex Coacervate Hydrogels Formed by ABA Triblock Copolymers". Macromolecules 53, n.º 21 (1 de outubro de 2020): 9234–43. http://dx.doi.org/10.1021/acs.macromol.0c01600.
Texto completo da fonteAmali, Arlin Jose, Shashi Singh, Nandini Rangaraj, Digambara Patra e Rohit Kumar Rana. "Poly(l-Lysine)–pyranine-3 coacervate mediated nanoparticle-assembly: fabrication of dynamic pH-responsive containers". Chem. Commun. 48, n.º 6 (2012): 856–58. http://dx.doi.org/10.1039/c1cc15209b.
Texto completo da fonteLi, Nan K., Yuxin Xie e Yaroslava G. Yingling. "Insights into Structure and Aggregation Behavior of Elastin-like Polypeptide Coacervates: All-Atom Molecular Dynamics Simulations". Journal of Physical Chemistry B 125, n.º 30 (21 de julho de 2021): 8627–35. http://dx.doi.org/10.1021/acs.jpcb.1c02822.
Texto completo da fonteSpruijt, Evan, Frans A. M. Leermakers, Remco Fokkink, Ralf Schweins, Ad A. van Well, Martien A. Cohen Stuart e Jasper van der Gucht. "Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-rays, and Light". Macromolecules 46, n.º 11 (31 de maio de 2013): 4596–605. http://dx.doi.org/10.1021/ma400132s.
Texto completo da fonteLappan, Uwe, Brigitte Wiesner e Ulrich Scheler. "Segmental Dynamics of Poly(acrylic acid) in Polyelectrolyte Complex Coacervates Studied by Spin-Label EPR Spectroscopy". Macromolecules 49, n.º 22 (3 de novembro de 2016): 8616–21. http://dx.doi.org/10.1021/acs.macromol.6b01863.
Texto completo da fonteNolles, Antsje, Ellard Hooiveld, Adrie H. Westphal, Willem J. H. van Berkel, J. Mieke Kleijn e Jan Willem Borst. "FRET Reveals the Formation and Exchange Dynamics of Protein-Containing Complex Coacervate Core Micelles". Langmuir 34, n.º 40 (13 de setembro de 2018): 12083–92. http://dx.doi.org/10.1021/acs.langmuir.8b01272.
Texto completo da fonteGibson, Iain, Arash Momeni e Mark Filiaggi. "Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis". Journal of Applied Biomaterials & Functional Materials 17, n.º 3 (julho de 2019): 228080001986363. http://dx.doi.org/10.1177/2280800019863637.
Texto completo da fonteZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao e Weizheng Sun. "Heteroprotein Complex Coacervate Based on β-Conglycinin and Lysozyme: Dynamic Protein Exchange, Thermodynamic Mechanism, and Lysozyme Activity". Journal of Agricultural and Food Chemistry 69, n.º 28 (9 de julho de 2021): 7948–59. http://dx.doi.org/10.1021/acs.jafc.1c02204.
Texto completo da fonteAnvari, Mohammad, e Donghwa Chung. "Dynamic rheological and structural characterization of fish gelatin – Gum arabic coacervate gels cross-linked by tannic acid". Food Hydrocolloids 60 (outubro de 2016): 516–24. http://dx.doi.org/10.1016/j.foodhyd.2016.04.028.
Texto completo da fonteLappan, Uwe, e Ulrich Scheler. "Influence of the Nature of the Ion Pairs on the Segmental Dynamics in Polyelectrolyte Complex Coacervate Phases". Macromolecules 50, n.º 21 (24 de outubro de 2017): 8631–36. http://dx.doi.org/10.1021/acs.macromol.7b01858.
Texto completo da fonteLiu, Wei, Jie Deng, Siyu Song, Soumya Sethi e Andreas Walther. "A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior". Communications Chemistry 7, n.º 1 (1 de maio de 2024). http://dx.doi.org/10.1038/s42004-024-01185-4.
Texto completo da fonteAppelhans, Dietmar, Yang Zhou, Kehu Zhang, Silvia Moreno, Achim Temme e Brigitte Voit. "Continuous Transformation from Membrane‐less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures". Angewandte Chemie, 7 de junho de 2024. http://dx.doi.org/10.1002/ange.202407472.
Texto completo da fonteAppelhans, Dietmar, Yang Zhou, Kehu Zhang, Silvia Moreno, Achim Temme e Brigitte Voit. "Continuous Transformation from Membrane‐less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures". Angewandte Chemie International Edition, 7 de junho de 2024. http://dx.doi.org/10.1002/anie.202407472.
Texto completo da fonteKluczka, Eugénie, Valentin Rinaldo, Angélique Coutable-Pennarun, Claire Stines-Chaumeil, J. L. Ross Anderson e Nicolas Martin. "Enhanced Catalytic Activity of a de novo Enzyme in a Coacervate Phase". ChemCatChem, 8 de maio de 2024. http://dx.doi.org/10.1002/cctc.202400558.
Texto completo da fonteWang, Jiahua, Manzar Abbas, Yu Huang, Junyou Wang e Yuehua Li. "Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs". Communications Chemistry 6, n.º 1 (7 de novembro de 2023). http://dx.doi.org/10.1038/s42004-023-01044-8.
Texto completo da fonteChen, Hongfei, Yishu Bao, Xiaojing Li, Fangke Chen, Ryohichi Sugimura, Xiangze Zeng e Jiang Xia. "Cell Surface Engineering by Phase‐Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy". Angewandte Chemie International Edition, 5 de agosto de 2024. http://dx.doi.org/10.1002/anie.202410566.
Texto completo da fonteChen, Hongfei, Yishu Bao, Xiaojing Li, Fangke Chen, Ryohichi Sugimura, Xiangze Zeng e Jiang Xia. "Cell Surface Engineering by Phase‐Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy". Angewandte Chemie, 5 de agosto de 2024. http://dx.doi.org/10.1002/ange.202410566.
Texto completo da fonteBlanco‐López, Marcos, Alejandro Marcos‐García, Álvaro González‐Garcinuño, Antonio Tabernero e Eva M. Martín del Valle. "Exploring the effect of experimental conditions on the synthesis and stability of alginate–gelatin coacervates". Polymers for Advanced Technologies 35, n.º 8 (agosto de 2024). http://dx.doi.org/10.1002/pat.6554.
Texto completo da fonteChoi, Hyunsuk, Yuri Hong, Saeed Najafi, Sun Young Kim, Joan‐Emma Shea, Dong Soo Hwang e Yoo Seong Choi. "Spontaneous Transition of Spherical Coacervate to Vesicle‐Like Compartment". Advanced Science, 8 de dezembro de 2023. http://dx.doi.org/10.1002/advs.202305978.
Texto completo da fonteNair, Karthika S., Sreelakshmi Radhakrishnan e Harsha Bajaj. "Dynamic Control of Functional Coacervates in Synthetic Cells". ACS Synthetic Biology, 19 de junho de 2023. http://dx.doi.org/10.1021/acssynbio.3c00249.
Texto completo da fonteSpäth, Fabian, Anton S. Maier, Michele Stasi, Alexander M. Bergmann, Kerstin Halama, Monika Wenisch, Bernhard Rieger e Job Boekhoven. "The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervates". Angewandte Chemie International Edition, 7 de agosto de 2023. http://dx.doi.org/10.1002/anie.202309318.
Texto completo da fonteSpäth, Fabian, Anton S. Maier, Michele Stasi, Alexander M. Bergmann, Kerstin Halama, Monika Wenisch, Bernhard Rieger e Job Boekhoven. "The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervates". Angewandte Chemie, 7 de agosto de 2023. http://dx.doi.org/10.1002/ange.202309318.
Texto completo da fonteKishimura, Akihiro, Biplab K C, Teruki Nii, Takeshi Mori e Yoshiki Katayama. "Dynamic frustrated charge hotspots created by charge density modulation sequester globular proteins into complex coacervates". Chemical Science, 2023. http://dx.doi.org/10.1039/d3sc00993a.
Texto completo da fonteArdestani, Faezeh, Ali Haghighi Asl e Ali Rafe. "Characterization of caseinate-pectin complex coacervates as a carrier for delivery and controlled-release of saffron extract". Chemical and Biological Technologies in Agriculture 11, n.º 1 (21 de agosto de 2024). http://dx.doi.org/10.1186/s40538-024-00647-0.
Texto completo da fonte