Artigos de revistas sobre o tema "Dye-Sensitized Photoelectrosynthetic Cell"

Siga este link para ver outros tipos de publicações sobre o tema: Dye-Sensitized Photoelectrosynthetic Cell.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 24 melhores artigos de revistas para estudos sobre o assunto "Dye-Sensitized Photoelectrosynthetic Cell".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Coppo, Rodolfo L., Byron H. Farnum, Benjamin D. Sherman, Neyde Y. Murakami Iha e Thomas J. Meyer. "The role of layer-by-layer, compact TiO2 films in dye-sensitized photoelectrosynthesis cells". Sustainable Energy & Fuels 1, n.º 1 (2017): 112–18. http://dx.doi.org/10.1039/c6se00022c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Farràs, P., C. Di Giovanni, J. N. Clifford, P. Garrido-Barros, E. Palomares e A. Llobet. "Light driven styrene epoxidation and hydrogen generation using H2O as an oxygen source in a photoelectrosynthesis cell". Green Chemistry 18, n.º 1 (2016): 255–60. http://dx.doi.org/10.1039/c5gc01589h.

Texto completo da fonte
Resumo:
This proof-of-concept dye-sensitized photoelectrosynthesis cell is able to produce a high-value chemical by the epoxidation of an alkene in water using sunlight and, at the same time, produce a solar fuel such as hydrogen.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Orbelli Biroli, Alessio, Francesca Tessore, Gabriele Di Carlo, Maddalena Pizzotti, Elisabetta Benazzi, Francesca Gentile, Serena Berardi et al. "Fluorinated ZnII Porphyrins for Dye-Sensitized Aqueous Photoelectrosynthetic Cells". ACS Applied Materials & Interfaces 11, n.º 36 (20 de agosto de 2019): 32895–908. http://dx.doi.org/10.1021/acsami.9b08042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Luo, Hanlin, Wenjing Song, Paul G. Hoertz, Kenneth Hanson, Rudresh Ghosh, Sylvie Rangan, M. Kyle Brennaman et al. "A Sensitized Nb2O5 Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell". Chemistry of Materials 25, n.º 2 (28 de dezembro de 2012): 122–31. http://dx.doi.org/10.1021/cm3027972.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wang, Degao, Qing Huang, Weiqun Shi, Wei You e Thomas J. Meyer. "Application of Atomic Layer Deposition in Dye-Sensitized Photoelectrosynthesis Cells". Trends in Chemistry 3, n.º 1 (janeiro de 2021): 59–71. http://dx.doi.org/10.1016/j.trechm.2020.11.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wang, Degao, Byron H. Farnum, Matthew V. Sheridan, Seth L. Marquard, Benjamin D. Sherman e Thomas J. Meyer. "Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell". ACS Applied Materials & Interfaces 9, n.º 39 (2 de março de 2017): 33533–38. http://dx.doi.org/10.1021/acsami.7b00225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Brennaman, M. Kyle, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas e Thomas J. Meyer. "Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells". Journal of the American Chemical Society 138, n.º 40 (3 de outubro de 2016): 13085–102. http://dx.doi.org/10.1021/jacs.6b06466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Song, Wenjing, Zuofeng Chen, Christopher R. K. Glasson, Kenneth Hanson, Hanlin Luo, Michael R. Norris, Dennis L. Ashford, Javier J. Concepcion, M. Kyle Brennaman e Thomas J. Meyer. "Interfacial Dynamics and Solar Fuel Formation in Dye-Sensitized Photoelectrosynthesis Cells". ChemPhysChem 13, n.º 12 (19 de junho de 2012): 2882–90. http://dx.doi.org/10.1002/cphc.201200100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Song, Wenjing, Aaron K. Vannucci, Byron H. Farnum, Alexander M. Lapides, M. Kyle Brennaman, Berç Kalanyan, Leila Alibabaei et al. "Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell". Journal of the American Chemical Society 136, n.º 27 (30 de junho de 2014): 9773–79. http://dx.doi.org/10.1021/ja505022f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Xu, Bo, Lei Tian, Ahmed S. Etman, Junliang Sun e Haining Tian. "Solution-processed nanoporous NiO-dye-ZnO photocathodes: Toward efficient and stable solid-state p-type dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells". Nano Energy 55 (janeiro de 2019): 59–64. http://dx.doi.org/10.1016/j.nanoen.2018.10.054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wang, Degao, Fujun Niu, Michael J. Mortelliti, Matthew V. Sheridan, Benjamin D. Sherman, Yong Zhu, James R. McBride et al. "A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation". Proceedings of the National Academy of Sciences 117, n.º 23 (5 de setembro de 2019): 12564–71. http://dx.doi.org/10.1073/pnas.1821687116.

Texto completo da fonte
Resumo:
In the development of photoelectrochemical cells for water splitting or CO2reduction, a major challenge is O2evolution at photoelectrodes that, in behavior, mimic photosystem II. At an appropriate semiconductor electrode, a water oxidation catalyst must be integrated with a visible light absorber in a stable half-cell configuration. Here, we describe an electrode consisting of a light absorber, an intermediate electron donor layer, and a water oxidation catalyst for sustained light driven water oxidation catalysis. In assembling the electrode on nanoparticle SnO2/TiO2electrodes, a Ru(II) polypyridyl complex was used as the light absorber, NiO was deposited as an overlayer, and a Ru(II) 2,2′-bipyridine-6,6′-dicarboxylate complex as the water oxidation catalyst. In the final electrode, addition of the NiO overlayer enhanced performance toward water oxidation with the final electrode operating with a 1.1 mA/cm2photocurrent density for 2 h without decomposition under one sun illumination in a pH 4.65 solution. We attribute the enhanced performance to the role of NiO as an electron transfer mediator between the light absorber and the catalyst.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Call, Robert W., Leila Alibabaei, Robert J. Dillon, Robin R. Knauf, Animesh Nayak, Jillian L. Dempsey, John M. Papanikolas e Rene Lopez. "Growth and Post-Deposition Treatments of SrTiO3 Films for Dye-Sensitized Photoelectrosynthesis Cell Applications". ACS Applied Materials & Interfaces 8, n.º 19 (9 de maio de 2016): 12282–90. http://dx.doi.org/10.1021/acsami.6b01289.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Wang, Degao, Lei Wang, Matthew D. Brady, Christopher J. Dares, Gerald J. Meyer, Thomas J. Meyer e Javier J. Concepcion. "Self-Assembled Chromophore–Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell". Journal of Physical Chemistry C 123, n.º 50 (16 de outubro de 2019): 30039–45. http://dx.doi.org/10.1021/acs.jpcc.9b07125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Alibabaei, Leila, Benjamin D. Sherman, Michael R. Norris, M. Kyle Brennaman e Thomas J. Meyer. "Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell". Proceedings of the National Academy of Sciences 112, n.º 19 (27 de abril de 2015): 5899–902. http://dx.doi.org/10.1073/pnas.1506111112.

Texto completo da fonte
Resumo:
A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO3H2)2bpy)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ ([RuaII-RubII-OH2]4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[RuaII-RubII-OH2]4+(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ∼5. Systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm2 with 445-nm, ∼90-mW/cm2 illumination in a phosphate buffer at pH 7.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wang, Degao, Jun Hu, Benjamin D. Sherman, Matthew V. Sheridan, Liang Yan, Christopher J. Dares, Yong Zhu et al. "A molecular tandem cell for efficient solar water splitting". Proceedings of the National Academy of Sciences 117, n.º 24 (1 de junho de 2020): 13256–60. http://dx.doi.org/10.1073/pnas.2001753117.

Texto completo da fonte
Resumo:
Artificial photosynthesis provides a way to store solar energy in chemical bonds. Achieving water splitting without an applied external potential bias provides the key to artificial photosynthetic devices. We describe here a tandem photoelectrochemical cell design that combines a dye-sensitized photoelectrosynthesis cell (DSPEC) and an organic solar cell (OSC) in a photoanode for water oxidation. When combined with a Pt electrode for H2evolution, the electrode becomes part of a combined electrochemical cell for water splitting, 2H2O → O2+ 2H2, by increasing the voltage of the photoanode sufficiently to drive bias-free reduction of H+to H2. The combined electrode gave a 1.5% solar conversion efficiency for water splitting with no external applied bias, providing a mimic for the tandem cell configuration of PSII in natural photosynthesis. The electrode provided sustained water splitting in the molecular photoelectrode with sustained photocurrent densities of 1.24 mA/cm2for 1 h under 1-sun illumination with no applied bias.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Song, Wenjing, Hanlin Luo, Kenneth Hanson, Javier J. Concepcion, M. Kyle Brennaman e Thomas J. Meyer. "Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC)". Energy & Environmental Science 6, n.º 4 (2013): 1240. http://dx.doi.org/10.1039/c3ee24184j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Wang, Degao, Matthew V. Sheridan, Bing Shan, Byron H. Farnum, Seth L. Marquard, Benjamin D. Sherman, Michael S. Eberhart et al. "Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition". Journal of the American Chemical Society 139, n.º 41 (30 de agosto de 2017): 14518–25. http://dx.doi.org/10.1021/jacs.7b07216.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Song, Wenjing, Zuofeng Chen, M. Kyle Brennaman, Javier J. Concepcion, Antonio Otávio T. Patrocinio, Neyde Y. Murakami Iha e Thomas J. Meyer. "Making solar fuels by artificial photosynthesis". Pure and Applied Chemistry 83, n.º 4 (14 de março de 2011): 749–68. http://dx.doi.org/10.1351/pac-con-10-11-09.

Texto completo da fonte
Resumo:
In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO2 by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo-synthesis is available based on a “modular approach” in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a “dye-sensitized photoelectrosynthesis cell” (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Shan, Bing, Animesh Nayak, M. Kyle Brennaman, Meichuan Liu, Seth L. Marquard, Michael S. Eberhart e Thomas J. Meyer. "Controlling Vertical and Lateral Electron Migration Using a Bifunctional Chromophore Assembly in Dye-Sensitized Photoelectrosynthesis Cells". Journal of the American Chemical Society 140, n.º 20 (27 de abril de 2018): 6493–500. http://dx.doi.org/10.1021/jacs.8b03453.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Zhang, Xiaodan, Lei Lei, Xinpeng Wang e Degao Wang. "Ultrathin TiO2 Blocking Layers via Atomic Layer Deposition toward High-Performance Dye-Sensitized Photo-Electrosynthesis Cells". Sustainability 15, n.º 9 (23 de abril de 2023): 7092. http://dx.doi.org/10.3390/su15097092.

Texto completo da fonte
Resumo:
The collection of solar energy in chemical bonds via dye-sensitized photoelectrosynthesis cells (DSPECs) is a reliable solution. Herein, atomic layer deposition (ALD) introduced ultrathin blocking layers (BLs) between a mesoporous TiO2 membrane and fluorine-doped tin oxide (FTO), and much improved photoelectrochemical water oxidation performance was well documented. Samples with different BL thicknesses deposited on FTO were obtained by ALD. In the photoanode, polypyridyl Ru(II) complexes were used as photosensitizers, and Ru(bda)-type was used as a catalyst during water oxidation. Under one sun irradiation, the BL (i) increased the photocurrent density; (ii) slowed down the open-circuit voltage decay (OCVD) by electrochemical measurement; (iii) increased the photo-generated electron lifetime roughly from 1 s to more than 100 s; and (iv) enhanced the water oxidation efficiency from 25% to 85% with 0.4 V of applied voltage bias. All this pointed out that the ALD technique-prepared layers could greatly hinder the photogenerated electron–hole pair recombination in the TiO2-based photoanode. This study offers critical backing for the building of molecular films by the ALD technique to split water effectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Song, Wenjing, M. Kyle Brennaman, Javier J. Concepcion, Jonah W. Jurss, Paul G. Hoertz, Hanlin Luo, Chuncheng Chen, Kenneth Hanson e Thomas J. Meyer. "Interfacial Electron Transfer Dynamics for [Ru(bpy)2((4,4′-PO3H2)2bpy)]2+ Sensitized TiO2 in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics". Journal of Physical Chemistry C 115, n.º 14 (16 de março de 2011): 7081–91. http://dx.doi.org/10.1021/jp200124k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Alibabaei, Leila, Hanlin Luo, Ralph L. House, Paul G. Hoertz, Rene Lopez e Thomas J. Meyer. "Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels: let the molecules do the work". Journal of Materials Chemistry A 1, n.º 13 (2013): 4133. http://dx.doi.org/10.1039/c2ta00935h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Brennaman, M. Kyle, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas e Thomas J. Meyer. "ChemInform Abstract: Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells". ChemInform 47, n.º 51 (dezembro de 2016). http://dx.doi.org/10.1002/chin.201651286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Nikoloudakis, Emmanouil, Palas Baran Pati, Georgios Charalambidis, Darya S. Budkina, Stéphane Diring, Aurélien Planchat, Denis Jacquemin, Eric Vauthey, Athanassios G. Coutsolelos e Fabrice Odobel. "Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst". ACS Catalysis, 15 de setembro de 2021, 12075–86. http://dx.doi.org/10.1021/acscatal.1c02609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia