Artigos de revistas sobre o tema "Ductile fracture simulations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ductile fracture simulations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Liu, HS, e MW Fu. "Prediction and analysis of ductile fracture in sheet metal forming—Part I: A modified Ayada criterion". International Journal of Damage Mechanics 23, n.º 8 (30 de junho de 2014): 1189–210. http://dx.doi.org/10.1177/1056789514541559.
Texto completo da fonteAzizi, Muhammad Azim, Mohd Faiz Mohd Ridhuan, Mohd Zakiyuddin Mohd Zahari, Sharafiz Abdul Rahim e Muhammad Amin Azman. "Peridynamic Model for Tensile Elongation and Fracture Simulations of Polymethyl Methacrylate Notched Specimens". Applied Mechanics and Materials 909 (28 de setembro de 2022): 11–28. http://dx.doi.org/10.4028/p-2z0841.
Texto completo da fonteDzioba, Ihor, e Sebastian Lipiec. "Fracture Mechanisms of S355 Steel—Experimental Research, FEM Simulation and SEM Observation". Materials 12, n.º 23 (29 de novembro de 2019): 3959. http://dx.doi.org/10.3390/ma12233959.
Texto completo da fonteBanabic, Dorel, e Abdolvahed Kami. "Applications of the Gurson’s model in sheet metal forming". MATEC Web of Conferences 190 (2018): 01002. http://dx.doi.org/10.1051/matecconf/201819001002.
Texto completo da fonteWatanabe, Atsuo, Kunio Hayakawa e Shinichiro Fujikawa. "An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging". Metals 12, n.º 11 (27 de outubro de 2022): 1823. http://dx.doi.org/10.3390/met12111823.
Texto completo da fonteSimkins, D. C., e S. Li. "Meshfree simulations of thermo-mechanical ductile fracture". Computational Mechanics 38, n.º 3 (25 de novembro de 2005): 235–49. http://dx.doi.org/10.1007/s00466-005-0744-8.
Texto completo da fonteTong, Ying. "The Evaluation of Ductile Fracture Criteria (DFC) of 6061-T6 Aluminum Alloy". Applied Mechanics and Materials 44-47 (dezembro de 2010): 2837–41. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2837.
Texto completo da fonteSun, Dong Zhi, Michael Krawiec e Hariaokto Hooputra. "Characterization and Modelling of the Damage Behavior of Extruded Aluminum Profiles for Crash Simulations". Materials Science Forum 877 (novembro de 2016): 674–79. http://dx.doi.org/10.4028/www.scientific.net/msf.877.674.
Texto completo da fonteKacem, Ahmed, Hervé Laurent e Sandrine Thuillier. "Prediction of forming limit curve for AA6061-T6 at room and elevated temperatures". IOP Conference Series: Materials Science and Engineering 1238, n.º 1 (1 de maio de 2022): 012044. http://dx.doi.org/10.1088/1757-899x/1238/1/012044.
Texto completo da fonteYuan, Huang, Guoyu Lin e Alfred Cornec. "Verification of a Cohesive Zone Model for Ductile Fracture". Journal of Engineering Materials and Technology 118, n.º 2 (1 de abril de 1996): 192–200. http://dx.doi.org/10.1115/1.2804886.
Texto completo da fonteToan, Nguyen Duc, Nguyen Trong Hung, Bui Ngoc Tuyen e Nguyen Tien Dong. "FEM STUDY TO VERIFY THE EFFECT OF EMBOSSING AND WAVE SHAPES ON FORMABILITY OF STAMPING PROCESS FOR MULTI-HOLE ETCHING METAL FOIL USING SUS316L MATERIAL". ASEAN Engineering Journal 2, n.º 2 (6 de junho de 2012): 43–50. http://dx.doi.org/10.11113/aej.v2.15348.
Texto completo da fontePour Mahmoud, N., e A. Zabihi. "Numerical Simulation of a Single-Phase Flow Through Fractures with Permeable, Porous and Non-Ductile Walls". Engineering, Technology & Applied Science Research 7, n.º 5 (19 de outubro de 2017): 2041–46. http://dx.doi.org/10.48084/etasr.1448.
Texto completo da fonteKvačkaj, Tibor, Juraj Tiža, Július Bacsó, Andrea Kováčová, Robert Kočiško, Rudolf Pernis, Monika Fedorčáková e Pavol Purcz. "Cockcroft-Latham Ductile Fracture Criteria for Non Ferrous Materials". Materials Science Forum 782 (abril de 2014): 373–78. http://dx.doi.org/10.4028/www.scientific.net/msf.782.373.
Texto completo da fonteKeralavarma, Shyam M. "A multi-surface plasticity model for ductile fracture simulations". Journal of the Mechanics and Physics of Solids 103 (junho de 2017): 100–120. http://dx.doi.org/10.1016/j.jmps.2017.03.005.
Texto completo da fonteGuo, Junhang, Ri-ichi Murakami e Shengdun Zhao. "A STUDY ON EXPERIMENTS AND SIMULATIONS FOR DUCTILE FRACTURE OF ISOTROPIC MATERIAL USING ROUSSELIER'S DAMAGE MODEL". International Journal of Modern Physics: Conference Series 06 (janeiro de 2012): 257–62. http://dx.doi.org/10.1142/s2010194512003273.
Texto completo da fonteEom, Ji-Ho, Chul Kyu Jin, Dae-Young Ahn, JSS Babu, Jun-Young Jang e Min Sik Lee. "Comparison of FE Simulation and Experiment on Tensile Test of TWB-HPF 22MnB5 Steel". Metals 14, n.º 10 (16 de outubro de 2024): 1176. http://dx.doi.org/10.3390/met14101176.
Texto completo da fonteQuan, Guo-zheng, Gui-chang Luo, An Mao, Jian-ting Liang e Dong-sen Wu. "Evaluation of Varying Ductile Fracture Criteria for 42CrMo Steel by Compressions at Different Temperatures and Strain Rates". Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/579328.
Texto completo da fonteGoijaerts, A. M., L. E. Govaert e F. P. T. Baaijens. "Prediction of Ductile Fracture in Metal Blanking". Journal of Manufacturing Science and Engineering 122, n.º 3 (1 de outubro de 1999): 476–83. http://dx.doi.org/10.1115/1.1285909.
Texto completo da fonteLu, Yue, Kun Liu, Zili Wang, Wenyong Tang e Jørgen Amdahl. "Development of ductile fracture modelling approach in ship impact simulations". Ocean Engineering 252 (maio de 2022): 111173. http://dx.doi.org/10.1016/j.oceaneng.2022.111173.
Texto completo da fonteKang, K., e W. Cai. "Brittle and ductile fracture of semiconductor nanowires – molecular dynamics simulations". Philosophical Magazine 87, n.º 14-15 (11 de maio de 2007): 2169–89. http://dx.doi.org/10.1080/14786430701222739.
Texto completo da fonteSUGIYAMA, Hirofumi, Kazumi MATSUI e Takahiro YAMADA. "Ductile fracture simulations by damage model and finite cover method". Proceedings of The Computational Mechanics Conference 2016.29 (2016): 4_210. http://dx.doi.org/10.1299/jsmecmd.2016.29.4_210.
Texto completo da fonteAnvari, Majid, Jun Liu e Christian Thaulow. "Dynamic ductile fracture in aluminum round bars: experiments and simulations". International Journal of Fracture 143, n.º 4 (9 de maio de 2007): 317–32. http://dx.doi.org/10.1007/s10704-007-9062-9.
Texto completo da fonteBen Chabane, Nassima, Nassim Aguechari e Mohand Ould Ouali. "Study of the slant fracture in solid and hollow cylinders: Experimental analysis and numerical prediction". Frattura ed Integrità Strutturale 17, n.º 63 (21 de dezembro de 2022): 169–89. http://dx.doi.org/10.3221/igf-esis.63.15.
Texto completo da fonteRahafrooz, M., M. Sanjari, M. Moradi e Danial Ghodsiyeh. "Prediction of Rupture in Gas Forming Process Using Continuum Damage Mechanic". Advanced Materials Research 463-464 (fevereiro de 2012): 1047–51. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.1047.
Texto completo da fonteCai, Wei, Zhihui Zhou, Xudong Qian, Dongfeng Cao, Shuxin Li, Ling Zhu e Haixiao Hu. "Numerical Study on Ductile Failure Behaviours of Steel Structures under Quasi-Static Punch Loading". Journal of Marine Science and Engineering 11, n.º 6 (9 de junho de 2023): 1197. http://dx.doi.org/10.3390/jmse11061197.
Texto completo da fonteGuo, Jun Hang, Ri Ichi Murakami e Sheng Dun Zhao. "Simulation of Ductile Fracture in an Aluminum Alloy Using Various Criteria". Advanced Materials Research 560-561 (agosto de 2012): 973–78. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.973.
Texto completo da fonteOh, Chang Kyun, Yun Jae Kim, Jong Hyun Baek, Young Pyo Kim e Woo Sik Kim. "A Micromechanical Model for Ductile Fracture of API X65". Key Engineering Materials 321-323 (outubro de 2006): 43–47. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.43.
Texto completo da fonteWciślik, Wiktor, e Robert Pała. "Some Microstructural Aspects of Ductile Fracture of Metals". Materials 14, n.º 15 (2 de agosto de 2021): 4321. http://dx.doi.org/10.3390/ma14154321.
Texto completo da fonteQian, L., Hiroyuki Toda, Kentaro Uesugi, Masakazu Kobayashi e Toshiro Kobayashi. "3D Image-Based Modeling of Ductile Fracture in an Aluminum Alloy Using Synchrotron X-Ray CT Images". Materials Science Forum 561-565 (outubro de 2007): 263–66. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.263.
Texto completo da fonteGrolleau, Vincent, Vincent Lafilé, Christian C. Roth, Bertrand Galpin, Laurent Mahéo e Dirk Mohr. "Rate-dependent ductile fracture under plane strain tension: experiments and simulations". EPJ Web of Conferences 183 (2018): 02022. http://dx.doi.org/10.1051/epjconf/201818302022.
Texto completo da fonteZhuang, Xincun, Yehui Meng e Zhen Zhao. "Evaluation of prediction error resulting from using average state variables in the calibration of ductile fracture criterion". International Journal of Damage Mechanics 27, n.º 8 (24 de agosto de 2017): 1231–51. http://dx.doi.org/10.1177/1056789517728563.
Texto completo da fonteChuzhoy, L., R. E. DeVor, S. G. Kapoor, A. J. Beaudoin e D. J. Bammann. "Machining Simulation of Ductile Iron and Its Constituents, Part 1: Estimation of Material Model Parameters and Their Validation". Journal of Manufacturing Science and Engineering 125, n.º 2 (15 de abril de 2003): 181–91. http://dx.doi.org/10.1115/1.1557294.
Texto completo da fonteHentati, Hamdi, Ilyes Ben Naceur, Wassila Bouzid e Aref Maalej. "Numerical Analysis of Damage Thermo-Mechanical Models". Advances in Applied Mathematics and Mechanics 7, n.º 5 (21 de julho de 2015): 625–43. http://dx.doi.org/10.4208/aamm.2014.m517.
Texto completo da fonteVladimirov, Ivaylo N., Michael P. Pietryga, Yalin Kiliclar, Vivian Tini e Stefanie Reese. "Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage". International Journal of Damage Mechanics 23, n.º 8 (16 de janeiro de 2014): 1096–132. http://dx.doi.org/10.1177/1056789513518953.
Texto completo da fonteCharoensuk, Kritchanan, e Viton Uthaisangsuk. "Determination of 3D Ductile Failure Criteria for Advanced High Strength Steel Sheet". Key Engineering Materials 658 (julho de 2015): 53–58. http://dx.doi.org/10.4028/www.scientific.net/kem.658.53.
Texto completo da fonteAmri, A. El, M. H. El Yakhloufi e A. Khamlichi. "Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials". International Journal of Applied Mechanics and Engineering 22, n.º 2 (24 de maio de 2017): 475–81. http://dx.doi.org/10.1515/ijame-2017-0031.
Texto completo da fonteSpielmannová, Alena, Anna Machová e Petr Hora. "Crack Orientation versus Ductile-Brittle Behavior in 3D Atomistic Simulations". Materials Science Forum 567-568 (dezembro de 2007): 61–64. http://dx.doi.org/10.4028/www.scientific.net/msf.567-568.61.
Texto completo da fonteSUGIYAMA, Hirofumi, Kazumi MATSUI, Takahiro YAMADA e Shigenobu OKAZAWA. "Ductile fracture simulations by damage model based on continuous damage mechanics". Proceedings of The Computational Mechanics Conference 2017.30 (2017): 307. http://dx.doi.org/10.1299/jsmecmd.2017.30.307.
Texto completo da fonteWANG, Fangyi, Hiroki YASUFUKU e Takehiro FUJIMOTO. "Numerical simulations for 3 point ductile metal fracture under projectile collision". Proceedings of The Computational Mechanics Conference 2019.32 (2019): 137. http://dx.doi.org/10.1299/jsmecmd.2019.32.137.
Texto completo da fonteMediavilla, J., R. H. J. Peerlings e M. G. D. Geers. "A robust and consistent remeshing-transfer operator for ductile fracture simulations". Computers & Structures 84, n.º 8-9 (março de 2006): 604–23. http://dx.doi.org/10.1016/j.compstruc.2005.10.007.
Texto completo da fonteRandelius, Mats, Therese Krantz e Arne Melander. "Experimental Testing and Computer Simulations of Ductile Fracture in Tool Steels". steel research international 83, n.º 1 (28 de outubro de 2011): 91–99. http://dx.doi.org/10.1002/srin.201100220.
Texto completo da fonteBolli, Eleonora, Alessandra Fava, Paolo Ferro, Saulius Kaciulis, Alessio Mezzi, Roberto Montanari e Alessandra Varone. "Cr Segregation and Impact Fracture in a Martensitic Stainless Steel". Coatings 10, n.º 9 (29 de agosto de 2020): 843. http://dx.doi.org/10.3390/coatings10090843.
Texto completo da fonteBao, Zeying, e Fulin Shang. "New Insights on the Tensile Strength and Fracture Mechanism of c-ZrO2/α-Al2O3 Interfaces". Applied Sciences 13, n.º 6 (15 de março de 2023): 3742. http://dx.doi.org/10.3390/app13063742.
Texto completo da fonteTawfik, Ahmed Bahgat, Sameh Youssef Mahfouz e Salah El-Din Fahmy Taher. "Nonlinear ABAQUS Simulations for Notched Concrete Beams". Materials 14, n.º 23 (30 de novembro de 2021): 7349. http://dx.doi.org/10.3390/ma14237349.
Texto completo da fonteZhang, Hua, Hong Zhang, Fuguo Li e Jun Cao. "A Novel Damage Model to Predict Ductile Fracture Behavior for Anisotropic Sheet Metal". Metals 9, n.º 5 (23 de maio de 2019): 595. http://dx.doi.org/10.3390/met9050595.
Texto completo da fonteCerik, Burak Can, e Joonmo Choung. "Fracture Prediction of Steel-Plated Structures under Low-Velocity Impact". Journal of Marine Science and Engineering 11, n.º 4 (24 de março de 2023): 699. http://dx.doi.org/10.3390/jmse11040699.
Texto completo da fonteSkripnyak, Vladimir V., e Vladimir A. Skripnyak. "Ductile Fracture of Titanium Alloys in the Dynamic Punch Test". Metals 14, n.º 5 (30 de abril de 2024): 528. http://dx.doi.org/10.3390/met14050528.
Texto completo da fonteBrünig, Michael, Daniel Brenner e Steffen Gerke. "Modeling of Stress-State-Dependent Damage and Failure of Ductile Metals". Applied Mechanics and Materials 784 (agosto de 2015): 35–42. http://dx.doi.org/10.4028/www.scientific.net/amm.784.35.
Texto completo da fonteAkbarzadeh, P., e Saeid Hadidi-Moud. "Temperature and Geometry Dependence of Fracture Toughness in "Euro Fracture Dataset"". Key Engineering Materials 452-453 (novembro de 2010): 409–12. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.409.
Texto completo da fonteLiu, Yan, Shuto Ikeda, Yanyan Liu e Hanbin Ge. "Ductile Fracture Investigation of High-Strength Steel SM570 under Low Stress Triaxiality". Metals 12, n.º 8 (22 de agosto de 2022): 1394. http://dx.doi.org/10.3390/met12081394.
Texto completo da fonte