Literatura científica selecionada sobre o tema "DS rodent models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "DS rodent models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "DS rodent models"
Zhang, Tan, Xin Wang, Hannah M. Jester, Xueyan Zhou e Tao Ma. "Characterization of Apathy-Like Behaviors in Mouse Models of Down Syndrome". Journal of Alzheimer's Disease 101, n.º 4 (8 de outubro de 2024): 1217–26. http://dx.doi.org/10.3233/jad-240675.
Texto completo da fonteBartesaghi, Renata, Stefano Vicari e William C. Mobley. "Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders". Annual Review of Pharmacology and Toxicology 62, n.º 1 (6 de janeiro de 2022): 211–33. http://dx.doi.org/10.1146/annurev-pharmtox-041521-103641.
Texto completo da fonteDeckert, Jutta, Jenny Thirlway, Yun-Hee Park, Ho Young Song, Chul-Woong Chung, Xuesong Wang, Zhenshan Zhang e Robert J. Lutz. "Abstract 1753: IKS014, a HER2-targeting antibody drug conjugate incorporating novel bioconjugation and tumor-selective linker technology with improved in vivo efficacy and tolerability". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 1753. http://dx.doi.org/10.1158/1538-7445.am2022-1753.
Texto completo da fonteZhang, Xichen, Michael W. Epperly, Mark A. Kay, Zhi-Ying Chen, Tracy Smith, Darcy Franicola, Benjamin Greenberger, Paavani Komanduri e Joel S. Greenberger. "Minicircle Plasmid Containing the Human Manganese Superoxide Dismutase (MnSOD) Transgene Confers Radioprotection to Hematopoietic Progenitor Cell Line 32Dcl3." Blood 110, n.º 11 (16 de novembro de 2007): 5138. http://dx.doi.org/10.1182/blood.v110.11.5138.5138.
Texto completo da fonteJin, Shanshan, Xiaochen Zhang, Yunlu Jia, Yongchao Dai, Fengwei Xu, Yongfeng Huang, Xun Wang et al. "The design, preclinical study and phase I dose escalation plan of a HER2 targeted immunoliposome (HF-K1) for HER2 low solid tumor treatment." Journal of Clinical Oncology 42, n.º 16_suppl (1 de junho de 2024): 3035. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.3035.
Texto completo da fonteNonoguchi, Hannah A., Timothy Wee Shang Kouo, Sandhya Kortagere, Joshua Hillman, David L. Boyle e Chitra D. Mandyam. "Lipopolysaccharide Exposure Differentially Alters Plasma and Brain Inflammatory Markers in Adult Male and Female Rats". Brain Sciences 12, n.º 8 (24 de julho de 2022): 972. http://dx.doi.org/10.3390/brainsci12080972.
Texto completo da fonteVenkateshappa, Chandregowda, Kishore Narayanan, Rashmi Nair, Aravind AB, Ramakishore VP Putta, Jwala Nagaraj, Megha Goyal et al. "Abstract 4432: A highly differentiated A2AR inhibitor for potential use in cancer therapy". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 4432. http://dx.doi.org/10.1158/1538-7445.am2023-4432.
Texto completo da fonteKhare, Leena, Ramulu Poddutoori, Subhendu Mukherjee, Samiulla DS, Devaraja TS, Sivapriya Marappan, Shilpa Nayak et al. "Abstract B172: Potent anti-tumor activity of a selective and orally bioavailable reversible covalent CDK12 inhibitor". Molecular Cancer Therapeutics 22, n.º 12_Supplement (1 de dezembro de 2023): B172. http://dx.doi.org/10.1158/1535-7163.targ-23-b172.
Texto completo da fonteFarrell, Clíona, Paige Mumford, Millie Beament, Gloria Lau, Yixing Wu, Marion Pellen, Monika Rataj Baniowska et al. "Modelling of the development and response to amyloid‐β accumulation in the context of trisomy21 in the rodent brain". Alzheimer's & Dementia 19, S12 (dezembro de 2023). http://dx.doi.org/10.1002/alz.075677.
Texto completo da fonteFarrell, Clíona, Paige Mumford e Frances K. Wiseman. "Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches". Frontiers in Neuroscience 16 (7 de junho de 2022). http://dx.doi.org/10.3389/fnins.2022.909669.
Texto completo da fonteTeses / dissertações sobre o assunto "DS rodent models"
Ahumada, Saavedra José Tomás. "Craniofacial analysis of Down syndrome rodent models". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ041.
Texto completo da fonteThe most frequent and distinctive alterations found in Down syndrome (DS) are learning disability and craniofacial (CF) dysmorphism. The CF phenotype includes reduced head dimensions, brachycephaly, reduced mediolateral orbital region, reduced bizygomatic breadth, small maxilla, small mandible, and increased individual variability. Until now, the cellular and molecular mechanisms underlying this CF phenotype remain unknown. This thesis, using a new panel of rats and mice models proposed new candidate genes for the DS-CF phenotype. We confirmed the role of Dyrk1a in neurocranium brachycephaly and identified the overdosage of the transcription factor Ripply3 for midface shortening through the downregulation of Tbx1, another transcription factor involved in similar phenotypes was found in Di George Syndrome. We defined new dosage-sensitive genes responsible for DS-CF malformations, and new models were proposed to rescue the DS-CF phenotype. This new knowledge may also lead to insights for specific brain and cardiovascular phenotypes observed in Tbx1 mutants and DS models